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At any given moment, organisms receive much more sensory 
and interoceptive information than they can physically pro-
cess. These capacity limitations are thought to have biased 

brain evolution toward information-processing strategies that are 
maximally efficient for the control of behavior, an idea known as 
efficient coding1,2. Such efficient-coding strategies can be observed 
in sensory systems where the precision with which neural repre-
sentations encode different states of an environmental variable (for 
example, different orientations) is proportional to the frequency 
with which this state is actually encountered3,4. This strategy ensures 
that the information encoded is as great as possible given the 
dynamic range of the physical system used to represent it5. However, 
these representations not only need to be efficiently encoded but 
also need to be decoded and interpreted so that the resulting per-
cepts provide maximally accurate information about the state of 
the world and the organism. Bayesian statistics imply that optimal 
perceptual processes would have to combine the representation of 
the environmental information (that is, the likelihood of a state) 
with an a priori expectation of these states6–8. While efficient coding 
and Bayesian decoding theories may appear related, they have only 
recently been combined in a unified theoretical framework that can 
account for various low-level perceptual biases4,9. But whether simi-
lar encoding and decoding strategies also operate in domains other 
than low-level perceptual systems remains an open question.

In the domain of preference-based decisions, it is commonly 
assumed that organisms rely on strategies that maximize the utility 
of the chosen option, based on stable and accurate representations 
of preferences that are not systematically affected by process-
ing-resource constraints. However, empirically observed choice 
behavior often deviates from the predictions of rational choice 
theory10. Purely descriptive theories of such anomalies have been 
offered, postulating either competition between parallel action-
selection processes based on simple heuristics10 or some type of 
arbitrary external noise that has no clear psychological or neu-
ral basis11–13. While such theories can account for some observed 
effects of choice variability, biases, or confidence in isolation11–15, 
a common framework linking these different aspects of behavior 
is largely missing. Moreover, these models sometimes contain 
assumptions about value representations that appear implausible 

given the constraints imposed by the limited-capacity nature of 
biological systems.

To account for these limitations, recent work has sought to find 
shared principles in the mechanisms underlying subjective valu-
ation and sensory perception11–13,16–21. Theories from this line of 
research have suggested that subjective value representations may 
resemble percepts in that they are derived by inference processes 
that exploit prior information about the relevant distribution of 
value stimuli in the environment16,17,19,21. Moreover, related lines of 
work suggest that neural reward circuits can flexibly adapt to differ-
ent value contexts in the evironment22–25, possibly consistent with the 
notion that neural resources are allocated efficiently to the encod-
ing of subjective values. However, it is unknown whether efficient 
coding and Bayesian decoding principles are indeed used jointly to 
generate preference representations, and it is unclear whether this 
information-processing scheme can explain the variability, biases, 
and confidence in value-based decisions in humans. This lack of 
knowledge may reflect that the distribution of subjective values in 
the natural environment is not easily measurable (in contrast to cor-
responding distributions of sensory signals26), since it depends on 
the long-term experience of each specific organism with the objects 
in its environment25.

Here we propose a way to test whether preference-based deci-
sions are indeed guided by a value representation scheme that com-
bines both efficient coding and Bayesian-decoding principles. We 
achieve this by introducing a novel approach for studying subjec-
tive valuation that takes account of the important fact that neither 
decision-makers nor experimenters have direct access to the ‘true’ 
stimulus values underlying all value-related behaviors (for example, 
ratings and choices). We demonstrate with modeling and behav-
ioral experiments that choice variability, biases, and confidence 
in human preference-based decisions can all be explained by a 
single value-inference process. This process maximizes informa-
tion transmission by optimally allocating limited resources to value 
representations, based on prior knowledge about the distribution of 
object values in the individual environment. Our approach accounts 
comprehensively for several aspects of value judgements and value-
based choices and proposes that humans may make value-based 
choices optimally given resource constraints.
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Preference-based decisions are essential for survival, for instance, when deciding what we should (not) eat. Despite their 
importance, preference-based decisions are surprisingly variable and can appear irrational in ways that have defied mechanis-
tic explanations. Here we propose that subjective valuation results from an inference process that accounts for the structure 
of values in the environment and that maximizes information in value representations in line with demands imposed by lim-
ited coding resources. A model of this inference process explains the variability in both subjective value reports and prefer-
ence-based choices, and predicts a new preference illusion that we validate with empirical data. Interestingly, the same model 
explains the level of confidence associated with these reports. Our results imply that preference-based decisions reflect infor-
mation-maximizing transmission and statistically optimal decoding of subjective values by a limited-capacity system. These 
findings provide a unified account of how humans perceive and valuate the environment to optimally guide behavior.
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Results
Efficient coding of subjective value. In studies of perceptual 
decisions, experimenters usually have complete knowledge of any 
experimental stimulus value v (for instance, the angular orienta-
tion of displayed Gabor patches). This is different in experiments 
studying value-based choices, since experimenters have no direct 
access to the ‘true’ value v of the presented object to an observer 
(Fig. 1a). Here we assume that this ‘true’ value v has been shaped 
by each observer’s personal history of experiences with this type 
of object and is therefore entirely subjective. A common strategy 
adopted by experimenters is thus to first derive an estimate ̂v of 
this subjective value—based on empirical choices or subjective 
reports (Fig. 1a)—that is subsequently used as input to a decision 
model11,12,14,15,27–29. However, we will show that this strategy is sub-
optimal because the value estimates ̂v are likely to be as inaccurate 
and biased as the subsequent choices. This is because the observer 
herself does not have direct access to the ‘true’ value v—after all, 
she does not have perfect memory of all her lifetime experiences. 
Thus, the observer needs to derive an estimate of the object’s value 
v every time this is necessary, for instance, when having to rate this 
value or when choosing between this object and another one. Any 
noise and bias resulting from encoding/decoding processes used to 
infer this value estimate should thus affect any type of behavior in 
similar ways. Given these limitations, we elaborate a new approach 
that yields more precise estimates of subjective values for the study 
of preference-based decisions, based on the principles of efficient 
coding and Bayesian decoding.

We model valuation as a probabilistic inference process incor-
porating both encoding and decoding (Fig. 1a; see Methods for 
full details). Presentation of an object with ‘true’ stimulus value v 
elicits an internal noisy response r (encoding) that is used by the 
observer to generate a subjective value estimate ̂v r( ) (decoding) that 
is reported behaviorally (Fig. 1a). In experimental settings, such 

behavioral reports typically have to be given on physically bounded 
rating scales11,12,14,15,27 that can differ across different settings. To 
account for this step, we assume that the individual’s internal sub-
jective scale for ̂v r( ) is physically unbounded but can be flexibly 
mapped via a function ̂g v( ) to any bounded scale in line with exper-
imental demands (Methods).

Inspired by previous work in the perceptual domain9, we assume 
that encoding of subjective values is efficient in the sense that the 
mutual information between the stimulus values v and the internal 
response r is maximized. This results in optimal use of the underly-
ing neuronal scale given the expected/learned natural distribution 
of values in the given environment, that is, the prior p(v). Different 
from work in the perceptual domain and standard approaches in 
neuroeconomic studies, we suppose that the experimenter has no 
knowledge about the specific stimulus value v0 that generated the 
reported rating scale value ˘ = ^v g v( ). However, if the experimenter 
obtains several value ratings v̆ for a given good (and if she repeats 
this for the full distribution of goods in a given context or environ-
ment), then it is possible to infer the stimulus value v0 that is most 
likely to have generated the observed rating distribution for that 
good (Methods and Supplementary Fig. 1). Moreover, if individu-
als employ this encoding approach, then the values v inferred based 
on the rating data should predict subsequent choice behavior in a 
multichoice task. For instance, in a two-alternative choice task, the 
optimal strategy is to choose good 1 over good 2 if ̂ > ̂v v1 2 are the 
Bayesian posterior means of each good, respectively (see Methods).

One can also make predictions of choice discriminability 
between two objects based on their position in the rating scale (Fig. 
1b,c). If the prior distribution has higher density over low subjec-
tive values, then predicted discriminability resembles a U-shaped 
function, but with higher choice accuracy for lower-valued goods 
(Fig. 1b). In contrast, if the prior distribution has higher density 
over high subjective values, then higher choice accuracy should be 
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Fig. 1 | Simplified schema of the value inference model. a, Observers infer the true value v of a food item by Bayesian inference constrained by efficient 

coding. The perceived food item with value v elicits an internal response r. The corresponding likelihood function p(r|v) is constrained by the prior belief 

p(v) via efficient coding. In this example, the prior p(v) matches the distribution of subjective values v of supermarket products. The prior is combined 

with the likelihood of generating a posterior distribution p(v|r) via Bayes rule to generate a subjective value estimate ̂v r( ). This estimate is subsequently 

mapped to the bounded rating scale imposed by the experimenter, resulting in an observed rating v̆. Crucially, unlike for experiments of perception, the 

experimenter has no access to the ‘true’ stimulus value v that the participant uses to generate a rating. b,c, Choice consistency predictions as a function 

of the rating scale position (right) for two different priors (left). Prior distributions with higher density over low subjective values lead to higher choice 

consistency for lower-valued goods (b). In contrast, prior distributions with higher density over high subjective values lead to higher choice consistency for 

higher-valued goods (c). Red arrows in b and c represent the shifted direction of the center of the prior relative to the indifference subjective value v =  0.
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observed for higher-valued goods (Fig. 1c). Interestingly, the latter 
prediction would be diametrically opposite to predictions based 
on Weber’s law8, which generally assumes that higher-value mag-
nitudes should lead to poorer discrimination. Our efficient-coding 
theory implies that Weber’s law should hold in the case of a particu-
lar kind of prior distribution that may be realistic for some sensory 
magnitudes, but not for the distribution of values for consumption 
goods assumed here.

Subjective value ratings and choice behavior. In a first behavioral 
experiment (experiment 1), we presented a set of food items to 
n =  38 study participants and asked them to indicate on a continu-
ous rating scale their preference to consume the presented item (Fig. 
2a and Methods). Crucially, the participants were familiar with the 
food products and had seen all of them before the ratings took place, 
ensuring that they could effectively use the full range of the rating 
scale. The products (M =  64 goods) were a representative sample 
of products typically encountered in the two biggest supermarket 
chains in Switzerland. Nevertheless, we ensured before testing that 
participants were indeed familiar with all products (Methods).

We then asked participants to rate the same items a second time, 
but crucially, they had been unaware that this second rating phase 
was going to take place, thus allowing a clean estimation of variabil-
ity in the decoded values (Methods and Fig. 2b). We tested whether 
this variability actually reflected the value coding/decoding opera-
tions rather than just random noise or an artifact of the bounded 
rating scale. To this end, the same participants underwent a series 
of incentive-compatible choices in which they selected from pairs 
of the previously rated food items the one item they preferred to 
eat. We defined a consistent choice as a trial in which the subject 
chose the item they had assigned a higher average rating across the 
two previous ratings. Choice consistency was affected by the value 
difference between the two items’ prior ratings: the higher the value 
difference, the more consistent the choices (multiple logistic regres-
sion, βRandEffects =  0.44 ±  0.05, P <  0.001; Fig. 2d). This concurs with 
the long-held notion that stronger evidence leads to more consis-
tent choices11,12. Importantly, choice consistency also depended on 
the variability in the value ratings: the higher this variability for the 
items on a given trial, the less consistent the decision (βRandEffects =   
− 0.21 ±  0.05, P <  0.001; Fig. 2d). Extending this trial-to-trial effect 
of rating variability, we observed that each participant’s average level 
of variability in the rating task was negatively correlated with the 
slope of the logistic regression of her individual choices on the items’ 
mean value difference (βrobust =  − 0.77 ±  0.20, P <  0.001; Fig. 2e). In 
other words, the higher the variability in the initial value ratings, the 
less consistent the subsequent choices between the rated items, both 
compared across trials and across participants. This already sug-
gests that properties of the value coding/decoding operations can 
somehow affect preference-based choices, but it does not character-
ize by what mechanisms they may influence the observed decisions. 
In the next sections, we will address this question by formal tests of 
the theoretical framework outlined in our model specification.

In experiment 1, the rating scale was continuous and without 
numerical cues (Fig. 2a). One may wonder whether rating vari-
ability might represent imprecisions in the participants’ assignment 
of the decoded subjective values to this rating line. We therefore 
conducted a second experiment (experiment 2, n =  37) in which 
the rating scale was divided into discrete steps with explicitly 
assigned numerical values (Fig. 2a and Methods). The variability 
in ratings across this scale clearly resembled the shape observed 
in experiment 1 (Fig. 2c) and had a similar significant impact on 
choice behavior (βRandEffects =  − 0.25 ±  0.05, P <  0.001; Fig. 2d). Again, 
each participant’s level of variability in the rating task correlated 
negatively with the slope of the regression of choice consistency on 
value difference between the goods (βrobust =  − 1.2 ±  0.25, P <  0.001;  
Fig. 2f). Thus, the influence of rating variability on subsequent 

choices does not depend on specifics of the rating procedure but 
may reflect characteristics of the noisy coding/decoding operations 
used by the observer to estimate the subjective value.

Testing the efficient-coding hypothesis. We now investigate to 
what extent the observed rating variability in experiments 1 and 2 
can be explained by the efficient-coding model. We started by infer-
ring the values ⋯v M(1, , )  of each good m that maximized the likeli-
hood of the observed set of ratings for each participant (Methods). 
In experiments 1 and 2, the rating dataset consisted of M =  64 and 
M =  61 goods, respectively, with N =  2 ratings for each good. The 
fitted model successfully captured the empirically observed rating 
variability (Fig. 2b,c) and the distribution of subjective value esti-
mates ̂v (Supplementary Fig. 2). We compared the quality of these 
efficient-coding model fits with those of a simple flexible model that 
assumes constant Gaussian noise over the rating scale with no prior 
distribution constraints on the values ⋯v M(1, , ) . For both experi-
ments 1 and 2, the efficient-coding model explained the rating dis-
tribution better than the alternative model (Supplementary Fig. 3).

Exploration of the rating data revealed that the distribution of 
ratings was highly variable across participants (Supplementary 
Figs. 4 and 5), perhaps indicating that each individual holds dif-
ferent priors over values due to different long-term experience. 
The inferred prior distributions for both experiments based on 
our model revealed that the expected value of the prior across the 
population was shifted toward higher values (Fig. 2b,c). Choice 
discriminability should therefore resemble the shape predicted in 
Fig. 1c. If the subjective values of the products are derived using 
efficient-coding principles, then using the framework described 
above should allow us to predict each individual’s preference-based 
decisions. It is important to emphasize that for these prediction 
analyses, we fixed for each participant the parameters of the prior 
distribution p(v) and the stimulus values ⋯v M(1, , )  to the specific 
values obtained when fitting the model to the separate rating data. 
Using these out-of-sample parameters and values, and only adjust-
ing the encoder and external noise, our model did a good job at 
predicting the choice data (Fig. 2g,h), as suggested by both the 
qualitative predictions and leave-one-out cross-validation metrics 
(Methods and Supplementary Note 1). To determine which aspects 
of the operations formalized in the efficient-coding model are most 
relevant for explaining behavior, we compared the predictive power 
of our model to that of alternative models (Supplementary Note 1). 
For both experiments, the efficient-coding model predicted the data 
best, as suggested by both the qualitative predictions and leave-one-
out cross-validation metrics (Supplementary Note 1).

It may be argued that the specific pattern of choices observed 
in our experiments could also be captured by a model that does 
not contain efficient coding but instead fits the full shape of the 
likelihood function to the observed data, as done for example 
in previous work on perceptual discrimination26. However, it is 
important to emphasize that our approach does not require us 
to fit arbitrary shapes of likelihood functions, as these shapes 
naturally arise from the efficient coding formalized in our 
model, which only requires fit of one free parameter: noise in 
the efficient-coding space (for a detailed discussion of this topic 
see Supplementary Note 2). Thus, the explanatory power of our 
model does not reflect the general flexibility of Bayesian infer-
ence per se but specifically relates to the efficient coding of values 
embedded in the Bayesian inference process.

The results presented so far suggest that subjective-value repre-
sentations guiding human preference-based decisions are inferred 
and employed optimally using both efficient coding and Bayesian 
decoding. However, it remains unclear whether internal noise due 
to efficient coding is the main factor explaining fluctuations and 
potential biases in subjective-value estimations. We investigate this 
issue in the following section.
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Illusions of subjective value. The theory used here predicts in 
general that for a stimulus with value v0 near the peak of the prior, 
the subjective value estimate ̂v (and the resulting rating v̆) should 
be biased away from the prior, with the strength of this bias deter-
mined by the degree of noise in the internal representations used 
for inference9. We thus investigated whether a conceptually similar 
type of bias emerges during subjective-value estimation, reflecting 

an expectation-induced preference illusion and further supporting 
efficient coding of subjective value.

The estimation of this valuation bias necessarily requires knowl-
edge of the exact stimulus value v0 that serves as input on any given 
trial, which is difficult in our case since the experimenter does not 
have direct access to v0 (Fig. 1a). To cope with this problem, we 
first derived predictions of the estimation bias for different levels of 
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n�= �37). Participants gave their rating by adjusting the position of a green arrow underneath the scale. Bottom left: an example display from the decision-

making task requiring participants to choose which of the two items (upper or lower) they preferred to consume after the experiment. b, Left: rating 

variability plotted as a function of each item’s mean rating across both rounds for experiment 1 (black dots show the mean across participants; dot error 

bars represent the s.e.m. across participants). Based on our model fits, we simulated 500 experiments in which we drew N�= �2 ratings for each good and 

plotted the simulated rating variability as a function of the mean rating (semitransparent red lines). Right: posterior estimates of the expected value of the 

prior are shifted toward higher rating values (the zero position maps to the center of the rating scale). c, Same as b but for experiment 2. Red arrows in b 

and c represent the shifted direction of the expected value of the prior relative to the indifference subjective value v =  0. d, Standardized estimates from 

multiple logistic regression show that the higher the VD between the mean ratings, the more consistent the choices. Crucially, the higher the variability in 
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no reliable influence on choices across the two experiments. Error bars represent the 95% highest-density interval of the posterior estimates. *P�< �0.05; 

***P�< �0.001. e,f, The trial-to-trial effect shown in d was also reflected in the variance across participants, as the general level of variability in the rating task 

correlated negatively with the slope of a logistic regression of choice consistency on value difference between the goods (experiment 1 (e): βrobust�= � 

− 0.77�± �0.20, P�< �0.001; experiment 2 (f): βrobust�= �− 1.2�± �0.25, P�< �0.001). In e and f, the blue line represents the best linear fit and the grey area represents 

the 95% confidence interval of the linear fit. g,h, Observed data (red dots) match the model predictions (blue dots), plotted as a function of the two items’ 

absolute value difference ( −v v|˘ ˘ |1 2  in 10 tiles; left) and overall value ( +v v˘ ˘1 2 in quartiles; right) for experiment 1 (g) and experiment 2 (h). For boxplots, lower 

and upper hinges correspond to the 25th and 75th percentiles and each semitransparent dot represents the data of one participant. The lower whiskers 

represent the lowest observed value within Q1 and 1.5 ×  Q1, and upper whiskers represent the highest observed value within Q3 and 1.5 ×  Q3, where Q1 

and Q3 are the first and third quartile, respectively.
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internal noise σ in the value representations. We assumed that this 
noise varies with the stimulus presentation times, based on theo-
retical frameworks postulating that value estimates are constructed 
using samples from memories/emotions associated with the physi-
cal features of the objects30. This suggests that a reduction in visual 
stimulation time should reduce the number of samples that can be 
drawn and should therefore increase the noise in the internal value 
representations31. To make this intuition explicit, we formulated a 
mathematical proof confirming that the number of discrete samples 
(for example, memories) that can be drawn over time is inversely 
proportional to the level of encoding noise in a capacity-limited sys-
tem (Supplementary Note 3). Crucially, this proof provides a nor-
mative foundation for the theoretical frameworks30–32 motivating 
our approach and confirms the validity of the assumptions underly-
ing our simulations and experimental strategy.

To derive initial qualitative predictions for the value estimation 
bias for different presentation times—and therefore levels of encod-
ing noise—we performed model simulations using the prior p(v) 
obtained in experiments 1 and 2, with the consequence that its peak 
was slightly shifted to the right of the rating scale (Fig. 2b,c). We 
selected two levels of encoding noise σ based on the noise levels 
observed in experiment 1 (see Supplementary Note 4 for a detailed 
discussion of the relation between encoding noise and the spe-
cific bias pattern). The simulations predicted biases for long expo-
sure times (low σ, black line in Fig. 3a) and short exposure times  

(high σ, red line in Fig. 3a) that are markedly different once the 
value estimates have been mapped onto the bounded rating scale  
via ̂g v( ). Crucially, the difference between these two predictions 
(high and low σ) is independent of v0:

̂ − − ̂ − = ̂ − ̂σ σ σ σv v v v v v( ) ( ) (1)0 0high low high low

Figure 3b shows that simulated rating trials with short exposure 
time (that is, high σ) have stronger repulsive (‘anti-Bayesian’) biases 
near the center of the prior (intersection point to the right of the 
center of the rating scale), but also stronger attraction biases when 
v0 is farther away from the peak of the prior. For values close to 
the prior, this prediction agrees with previous work showing repul-
sive noise-related biases in perceptual tasks9; however, as v0 moves 
away from the prior, our simulations predict the opposite tendency 
(attraction) that would also be expected based on classical Bayesian 
frameworks.

We devised a behavioral framework (experiment 3) to investigate 
whether these model-predicted biases are in fact observed for sub-
jective value estimations. Healthy individuals (n =  24) rated goods 
with similar procedures as in experiment 1. However, for the first 
round of ratings, a randomly determined half of the goods for each 
participant were presented for a duration of 900 ms and the other 
half for a duration of 2,600 ms. Participants did not know whether 
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with the model prediction in b. This suggests that human valuation exhibits complex illusions of subjective preference, as predicted by the Bayesian 

and efficient-coding hypothesis (see also Supplementary Fig. 7). Lower and upper boxplot hinges correspond to the 25th and 75th percentiles and each 

semitransparent dot represents the data of one participant. The lower whiskers represent the lowest observed value within Q1 and 1.5 ×  Q1, and upper 

whiskers represent the highest observed value within Q3 and 1.5 ×  Q3, where Q1 and Q3 are the first and third quartile, respectively.
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a given item was going to be presented for the short or long dura-
tion. In the second round of ratings, the presentation durations were 
inverted for each good, but participants did not know that this sec-
ond round was going to take place (see Methods for further details). 
Thus, participants were not able to predict the presentation times 
of individual items and could not develop differential information-
sampling strategies for items with long versus short presentation 
times. On each trial, the rating scale was presented just after the 
image had disappeared from the screen (see Fig. 1a), and partici-
pants were instructed to then provide their rating as fast as possible 
(mean reaction times (RTs) of 1.53 ±  0.45 and 1.39 ±  0.4 for low and 
high exposure times, respectively, see Supplementary Fig. 6). Thus, 
the effective sampling time (time from the onset of stimulus presen-
tation until response) was 1.53 ±  0.4 s longer for long exposure times 
(βRandEffects =  1.4 ±  0.08, P <  0.001; Supplementary Fig. 6), supporting 
our assumption that participants could draw a higher number of 
samples (and therefore reduce internal noise in the value represen-
tations) for images with long exposure times. We computed the dif-
ference in the ratings between short and long durations and plotted 
this difference as a function of the rating of the long duration (Fig. 
3c). The results of this analysis match the non-intuitive quantita-
tive predictions of the efficient-coding model (Fig. 3b), in showing 
systematic repulsion for the four data points near the peak of the 

prior and attraction for the other values that are farther away from 
the prior (Supplementary Fig. 7). Note that the repulsion effect that 
is both predicted and observed here at the center of the scale is not 
confined to this location for every possible context; its location and 
extent over the rating scale depends on the interaction of the three 
key parameters of our model: the prior location, prior shape, and 
level of encoding noise (Supplementary Note 4).

Control analyses confirmed that our results are not caused by sys-
tematic temporal order effects (no difference in value ratings between 
the first and second rounds for each of the exposure times; paired 
t-tests, all P >  0.18). We also compared the accuracy of our model’s 
predictions to that of control models in which we factorially varied 
all possible sources of noise that could in principle have affected the 
ratings (pre-encoding noise, efficient-coding noise, post-encoding 
noise, and lapses). Models without efficient coding lead to very 
different predictions that are not supported by our empirical data 
(Supplementary Fig. 8). To test this quantitatively, we performed 
a factorial model comparison to quantify the strength of empiri-
cal support given by our data for the presence of each noise source 
(Supplementary Fig. 9 and Supplementary Table 1). This revealed 
that the only noise source reliably accounting for the variation in 
subjective value estimation due to time pressure is internal noise 
in efficient coding (Bayes factor >  100; see Supplementary Fig. 9).  

How much would you
like to eat the item?

How confident are you
about your ratng?

+–

–

0.00

0.05

0.10

0.15

0.20

0.25

0.2 0.4 0.6 0.8 1.0

Rating scale

R
at

in
g 

va
ria

bi
lit

y
0

4

8

12

a

d e f

b c

0.00 0.25 0.50 0.75 1.00

Rating scale Value rating log[Var]

P
D

F

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

C
on

fid
en

ce

C
on

fid
en

ce
 (

pa
rt

ia
l e

ffe
ct

)

0.6

0.8

1.0

2 2.5 3.0 3.5 4.0 4.5

0

1

2

3

0.00 0.25 0.50 0.75

Prior mean

D
en

si
ty

Data
Model

Data

Model

r = –0.59
P < 0.001

0

0

*

*

Fig. 4 | Confidence (experiment 4). a, Participants (n�= �28) provided value ratings as in experiments 1 and 2, but also rated their confidence in the value 

ratings. Participants entered their value and confidence ratings by adjusting the location of a green arrow underneath each rating scale. b, Rating variability 

plotted as a function of each item’s mean rating across both rounds (solid black dots) was higher for low-rated items (β�= �− 0.18�± �0.04, P�< �0.001).  

c, Posterior estimates of the expected value of the prior are shifted toward higher rating values (the zero position maps to the center of the rating scale). 

d, Posterior probability density functions (PDF) were constructed for four symmetric subjective values v (different colors) in the unbounded subjective 

scale. Groups of densities on the left (light colors) and right (dark colors) reflect low and high subjective values, respectively. Given the expected value of 

the prior (c), the efficient-coding model predicts lower levels of confidence for low-rated goods (relatively wide posteriors; light colors) than for high-rated 

goods (relatively narrower posteriors; dark colors). e, Empirical confidence ratings (solid red dots) match the predictions (blue dots) of the best-fitting 

confidence model (see also Supplementary Table 2) across different value ratings (x axis). Confidence was higher for higher model-predicted subjective 

values (βRandEffects�= �0.22�± �0.070, P�= �0.002). f, Confidence relates to value-rating variability (shown is the partial correlation after controlling for rating 

value). As predicted by the model, these two metrics are negatively correlated (r�= �− 0.59, P�< �0.001). Dots represent the data of single participants, the 

blue line represents the identified correlation line, and the shaded area the 95% confidence interval of this line. In all other plots, error bars around data 

points represent s.e.m. across participants. For the boxplots, lower and upper hinges correspond to the 25th and 75th percentile and each semitransparent 

dot represents the data of one participant. The lower whiskers represent the lowest observed value within Q1 and 1.5 ×  Q1, and upper whiskers represent 

the highest observed value within Q3 and 1.5 ×  Q3, where Q1 and Q3 are the first and third quartile, respectively. In b and e, *P <  0.005.
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This strongly suggests that the biases in subjective value estimates 
observed in experiment 3 originate in the efficient-coding opera-
tions formalized in our model.

Confidence in subjective valuation. It has been suggested that the 
perceived confidence in subjective-value reports reflects a second-
order judgement (the confidence rating) about a first-order judge-
ment (the subjective-value rating)15. However, two important issues 
have remained unaddressed. First, previous work has not explicitly 
defined a generative model of the encoding and decoding of value 
representations; second-order statements about these ratings would 
therefore be subject to the same problems curtailing the validity of 
the ratings themselves. Second, previous work has remained agnos-
tic about both the information structure of values in the environ-
ment and capacity limitations. We therefore tested whether the 
reported confidence in subjective value estimations can be pre-
dicted based on the encoding/decoding process proposed here.

We conducted a new experiment (experiment 4) in which par-
ticipants provided value ratings as in experiment 1, but they now 
also gave a confidence rating after each value rating (Fig. 4a). We 
inferred the subjective values ⋯v M(1, , )  exactly as for experiments  
1 and 2. Once again, we found a shift of the expected prior (that is, 
its mean) toward higher values alongside higher rating variability 
for higher- than lower-rated items (hierarchical linear regression of 
rating variability for each item versus mean rated value: βRandEffects =   
− 0.18 ±  0.04, P <  0.001). Based on these results, we derived three 
qualitative predictions for the confidence ratings based on the defi-
nitions of confidence formulated above. First, confidence should 
be higher for rating values near the extremes of the rating scale 
(Fig. 4d), reflecting the transformation from the subjective space to 
the bounded scale. This prediction is in line with previous work15. 
Second, given the shift of the prior density toward higher subjective 
values (Fig. 4c), the efficient-coding framework predicts that the 
second-order judgement of the posterior probability perceived in 
the rating scale should decrease for item values toward the right side 
of the rating scale; confidence reports should therefore be higher for 
items with higher subjective value (Fig. 4d). Third, because lower 
levels of variability in the rating estimates generate narrower pos-
terior distributions, the average variability of each participant’s rat-
ings should be negatively related to her general level of confidence.

The data (Fig. 4e,f) confirm all three predictions. First, confi-
dence increases for values closer to the extremes of the rating scale 
(quadratic effect βRandEffects =  0.41 ±  0.03, P <  0.001). Second, confi-
dence was higher for higher model-predicted subjective values vm 
(βRandEffects =  0.22 ±  0.070, P =  0.002). This runs counter to previous 
suggestions15 that confidence ratings should be symmetric with 
respect to the center of the rating scale: both our model and empiri-
cal data reveal that this is not necessarily the case, as the confidence 
ratings depend on the prior distribution (Supplementary Table 2). 
Third, across participants, the higher the variability in the subjective 
value estimations, the less confident the participants are (βrobust =   
− 0.59, P <  0.0011). Crucially, this regression analysis controls for the 
mean value ratings for each participant (Fig. 4f), thereby confirm-
ing our model predictions that confidence relates to rating variabil-
ity independently of how valuable the participants rated the items. 
Finally, to test these model predictions more quantitatively for the 
observed data using our framework, we implemented 11 different 
proposed models of how confidence may be derived15,33–35 from the 
posterior distributions of rating values given by our framework (see 
full details of the model specifications in Supplementary Table 2). 
Crucially, we fixed both the parameters of the prior distribution and 
values ⋯v M(1, , )  for each participant to the values obtained by fitting 
the model to her prior rating data. We found that a model based on 
the statistical definition of confidence (that is, the probability that 
the rating is correct33,34) provided the best fit to the empirical con-
fidence reports (Fig. 4e and Supplementary Table 2). These results 

confirm that our efficient-coding model can capture the value infer-
ence processes that underlie not only subjective value estimates but 
also the reported confidence in these estimates.

Discussion
Our work demonstrates that variability, biases, and confidence in 
preference-based choices are all consistent with information-maxi-
mizing transmission and statistically optimal decoding of values by 
a limited-capacity system. This suggests that principles governing 
the encoding and interpretation of low-level sensory signals are also 
relevant when humans report and choose based on subjective pref-
erences. More specifically, our results support theoretical proposals 
according to which, just as in the case of sensory systems, subjective 
value systems optimize the use of limited resources for processing 
value information and exploit environmental regularities to guide 
preference-based decisions16,17,19. Thus, our findings provide a fun-
damental step toward a unified account of how humans perceive 
and valuate the environment to optimally guide behavior.

Our work introduces a new framework that may serve to improve 
the modeling and prediction of preference-based decision-making,  
and more generally any cognitive process that involves fully sub-
jective value estimations (such as pain36 and health37 perception, 
to mention only two examples). We demonstrate that the com-
mon practice of using value ratings as inputs to decision mod-
els11,12,14,15,27–29 is suboptimal, since these reports should be just as 
variable and biased as the choices that the experimenter wants to 
model. This is not a trivial issue, as both ratings and choices can 
be subject to complex nonlinearities due to the encoding/decod-
ing strategies implemented by the valuation system. Our model 
provides a solution to this problem, since it makes it possible 
to employ a single set of ratings to determine both the observ-
er’s subjective values and their underlying prior distribution, 
while simultaneously accounting for capacity limitations. These 
parameters and values can then be used to predict fully inde-
pendent preference-based decisions with higher accuracy than 
existing standard approaches in the literature. This procedure 
differs from traditional economic approaches that derive prefer-
ences directly from observed choices38 and that ignore the pro-
cesses involved in estimating subjective values (and the associated 
sources of variability). Our results show that this ignorance is not 
warranted; a detailed understanding of these processes should be 
a critical aspect to consider in theories of decision-making and  
economic behavior39.

In our model specification, variability in subjective value esti-
mates and choices emerges from both internal noise in the coding 
of value and unspecific (external) noise in the decision process. This 
perspective is fundamentally different from standard approaches 
where preference variability is solely attributed to unspecified noise 
in the decision process (for example, noise added to deterministic 
value functions13 through the application of a softmax function or 
diffusion noise in sequential sampling models11–13). Based on our 
empirical and modeling work, we argue that positing unspecified 
sources of noise in the decision process may be insufficient, given 
that accounting for noise involved in the coding of value appears 
to be crucial for deriving more accurate predictions of economic 
decisions21. Even though some characteristics of the models used for 
this purpose (for example, encoding rules and loss functions of the 
Bayesian encoder) may be refined by future research on both per-
ception40 and subjective valuation23, our findings clearly illustrate 
the general utility of this approach.

In some respects, our model of the coding of value resembles 
the one posited by decision-by-sampling theory41. That theory 
proposes that estimated subjective values directly reflect samples 
drawn from an internal noisy representation of value, but unlike 
in our approach, no optimal Bayesian decoding is assumed. As a 
consequence, decision-by-sampling theory cannot account for our 
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finding that biases in valuation are changed by time pressure, since 
drawing fewer samples should lead to value estimates that are nois-
ier, but not different on average. This contrasts with the predictions 
of the framework presented here, which we show to be fully congru-
ent with the biases observed under time pressure.

Our results support the idea that reported confidence in sub-
jective-value estimations is well captured by a statistical measure 
of confidence33,34. While a recently proposed framework15 provides 
an elegant model of confidence judgements for individual value 
estimates, it does not provide a precise account of what informa-
tion should actually be encoded but focuses only on what may be 
decoded. Additionally, that framework does not account for the 
effects of capacity limitations in information processing and the 
distribution of object values in the environment. Our work provides 
a more comprehensive characterization, by demonstrating that the 
same efficient-coding framework that accounts for biases and vari-
ability in subjective value estimates and choices also accounts for 
the reported confidence in these value estimates. In general, we 
hope that these results may motivate researchers to further develop 
explicit process models of metacognition42.

While our work highlights similarities between perceptual and 
value inference, it has remained agnostic as to how the internal 
response used for this purpose is derived from low- and high-level 
sensory signals. Understanding such feature extraction will be 
important for characterizing how the internal value response may be 
constructed, for example, by sampling from memory30,43 and emo-
tion systems44. While we formally demonstrate that the precision 
of encoded subjective values in capacity-limited systems may relate 
to the number of discrete samples that can be drawn (for example, 
from memory or emotion systems), we have so far only focused on 
the encoding and readout of simple one-dimensional subjective val-
ues associated with an object. However, the framework used here 
could be parsimoniously extended to incorporate a whole range of 
lower-level sensory signals and to encompass more complex hier-
archical structures. Despite this interesting challenge to further 
understanding the construction of preferences10, it is remarkable 
that a simple normative specification inspired by fundamental prin-
ciples of low-level sensory perception can capture important aspects 
of preference-based decisions.

Bayesian models have often been criticized for allowing an arbi-
trary choice of prior and likelihood functions, as a consequence of 
which it is suggested that their predictions are vacuous45. However, 
in this study, we have shown that by fully constraining the decision 
model to the distribution of object values—while taking account of 
capacity constraints—it is possible to accurately capture preference-
based choice behavior using a parsimonious model. In line with 
previous work on low-level sensory perception4,9, our results dem-
onstrate that the above-mentioned critique is not always valid. This 
should motivate researchers to pursue the identification of optimal 
solutions to computational problems posed by the environment—
in both perception and subjective valuation—without ignoring the 
fact that biological systems are by definition limited in their capacity 
to process information.

Taken together, our findings suggest that resource-constrained 
models inspired by models of perception3,9,16 may have far-reach-
ing implications not only in neuroscience, but also in psychol-
ogy16,46–48 and economics19,21,48–50. Such models offer the prospect 
of explanations for seemingly irrational aspects of choice behavior, 
grounded in the need to represent the world with only finite preci-
sion. Recent work suggests that features of economic decisions such 
as risk aversion21 and preference reversals19 can be understood as 
further examples of biases resulting from optimal Bayesian infer-
ence from imprecise internal representations of value. This supports 
our emphasis on the desirability of developing models of decision-
making that account simultaneously for the organisms’s goals, its 
environment, and its biological constraints.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-018-0292-0.

Received: 20 January 2018; Accepted: 13 November 2018;  
Published online: 17 December 2018

References
 1. Barlow, H. B. in Sensory Communication (ed. Rosenblith, W. A.)  

217–234 (MIT Press, Boston, 1961).
 2. Attneave, F. Some informational aspects of visual perception. Psychol. Rev. 61, 

183–193 (1954).
 3. Ganguli, D. & Simoncelli, E. P. Efficient sensory encoding and Bayesian 

inference with heterogeneous neural populations. Neural Comput. 26, 
2103–2134 (2014).

 4. Wei, X.-X. & Stocker, A. A. Lawful relation between perceptual bias and 
discriminability. Proc. Natl Acad. Sci. USA 114, 10244–10249 (2017).

 5. Laughlin, S. A simple coding procedure enhances a neuron’s information 
capacity. Z. Naturforsch. C 36, 910–912 (1981).

 6. Stocker, A. A. & Simoncelli, E. P. Noise characteristics and prior expectations 
in human visual speed perception. Nat. Neurosci. 9, 578–585 (2006).

 7. Körding, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor 
learning. Nature 427, 244–247 (2004).

 8. Petzschner, F. H., Glasauer, S. & Stephan, K. E. A Bayesian perspective on 
magnitude estimation. Trends. Cogn. Sci. 19, 285–293 (2015).

 9. Wei, X.-X. & Stocker, A. A. A Bayesian observer model constrained by 
efficient coding can explain ‘anti-Bayesian’ percepts. Nat. Neurosci. 18, 
1509–1517 (2015).

 10. Lichtenstein, S. & Slovic, P. The Construction of Preference (Cambridge Univ. 
Press, Cambridge, 2006).

 11. Polanía, R., Krajbich, I., Grueschow, M. & Ruff, C. C. Neural oscillations and 
synchronization differentially support evidence accumulation in perceptual 
and value-based decision making. Neuron 82, 709–720 (2014).

 12. Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and 
comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

 13. Hunt, L. T. et al. Mechanisms underlying cortical activity during value-guided 
choice. Nat. Neurosci. 15, 470–476 (2012).

 14. De Martino, B., Fleming, S. M., Garrett, N. & Dolan, R. J. Confidence in 
value-based choice. Nat. Neurosci. 16, 105–110 (2013).

 15. Lebreton, M., Abitbol, R., Daunizeau, J. & Pessiglione, M. Automatic 
integration of confidence in the brain valuation signal. Nat. Neurosci. 18, 
1159–1167 (2015).

 16. Summerfield, C. & Tsetsos, K. Do humans make good decisions?  
Trends. Cogn. Sci. 19, 27–34 (2015).

 17. Louie, K. & Glimcher, P. W. Efficient coding and the neural representation of 
value. Ann. N. Y. Acad. Sci. 1251, 13–32 (2012).

 18. Glimscher, P. W., Camerer, C., Fehr, E. & Poldrack, A. Neuroeconomics: 
Decision Making and the Brain (Elsevier, Amsterdam, The Netherlands, 2008).

 19. Woodford, M. Prospect theory as efficient perceptual distortion. Am. Econ. Rev. 
102, 41–46 (2012).

 20. Summerfield, C. & Tsetsos, K. Building bridges between perceptual  
and economic decision-making: neural and computational mechanisms. 
Front. Neurosci. 6, 70 (2012).

 21. Khaw, M. W., Li, Z. & Woodford, M. Cognitive imprecision and small-stakes 
RISK aversion. NBER Working Paper No. 23294 https://doi.org/10.3386/
w24978 (2018).

 22. Padoa-Schioppa, C. Range-adapting representation of economic value in  
the orbitofrontal cortex. J. Neurosci. 29, 14004–14014 (2009).

 23. Rustichini, A., Conen, K. E., Cai, X. & Padoa-Schioppa, C. Optimal  
coding and neuronal adaptation in economic decisions. Nat. Commun. 8, 
1208 (2017).

 24. Cox, K. M. & Kable, J. W. BOLD subjective value signals exhibit robust range 
adaptation. J. Neurosci. 34, 16533–16543 (2014).

 25. Khaw, M. W., Glimcher, P. W. & Louie, K. Normalized value coding explains 
dynamic adaptation in the human valuation process. Proc. Natl Acad. Sci. 
USA 114, 12696–12701 (2017).

 26. Girshick, A. R., Landy, M. S. & Simoncelli, E. P. Cardinal rules: visual 
orientation perception reflects knowledge of environmental statistics.  
Nat. Neurosci. 14, 926–932 (2011).

 27. Louie, K., Khaw, M. W. & Glimcher, P. W. Normalization is a general neural 
mechanism for context-dependent decision making. Proc. Natl Acad. Sci. USA 
110, 6139–6144 (2013).

 28. Grueschow, M., Polania, R., Hare, T. A. & Ruff, C. C. Automatic versus 
choice-dependent value representations in the human brain. Neuron 85, 
874–885 (2015).

NATURE NEUROSCIENCE | VOL 22 | JANUARY 2019 | 134–142 | www.nature.com/natureneuroscience 141



ARTICLES NATURE NEUROSCIENCE

 29. Hare, T. A., Schultz, W., Camerer, C. F., O’Doherty, J. P. & Rangel, A. 
Transformation of stimulus value signals into motor commands  
during simple choice. Proc. Natl Acad. Sci. USA 108, 18120–18125  
(2011).

 30. Shadlen, M. N. N. & Shohamy, D. Decision making and sequential sampling 
from memory. Neuron 90, 927–939 (2016).

 31. Milosavljevic, M., Malmaud, J., Huth, A., Koch, C. & Rangel, A.  
The drift diffusion model can account for value-based choice response  
times under high and low time pressure. Judgem. Decis. Mak. 5,  
437–449 (2010).

 32. Gluth, S., Sommer, T., Rieskamp, J. & Büchel, C. Effective connectivity 
between hippocampus and ventromedial prefrontal cortex controls 
preferential choices from memory. Neuron 86, 1078–1090 (2015).

 33. Pouget, A., Drugowitsch, J. & Kepecs, A. Confidence and certainty:  
distinct probabilistic quantities for different goals. Nat. Neurosci. 19,  
366–374 (2016).

 34. Sanders, J. I., Hangya, B. & Kepecs, A. Signatures of a statistical computation 
in the human sense of confidence. Neuron 90, 499–506 (2016).

 35. van den Berg, R., Yoo, A. H. & Ma, W. J. Fechner’s law in metacognition: a 
quantitative model of visual working memory confidence. Psychol. Rev. 124, 
197–214 (2017).

 36. Wiech, K. Deconstructing the sensation of pain: the influence of cognitive 
processes on pain perception. Science 354, 584–587 (2016).

 37. Hare, T. A., Camerer, C. F. & Rangel, A. Self-control in decision-making 
involves modulation of the vmPFC valuation system. Science 324,  
646–648 (2009).

 38. Sen, A. K. Choice functions and revealed preference. Rev. Econ. Stud. 38, 
307–317 (1971).

 39. Bernheim, B. D. & Rangel, A. Beyond revealed preference: choice-theoretic 
foundations for behavioral welfare economics. Q. J. Econ. 124,  
51–104 (2009).

 40. Sims, C. R. Rate-distortion theory and human perception. Cognition 152, 
181–198 (2016).

 41. Stewart, N., Chater, N. & Brown, G. D. A. Decision by sampling. Cognit. 
Psychol. 53, 1–26 (2006).

 42. Fleming, S. M. & Daw, N. D. Self-evaluation of decision-making: a general 
Bayesian framework for metacognitive computation. Psychol. Rev. 124, 
91–114 (2017).

 43. Weber, E. U. & Johnson, E. J. Mindful judgment and decision making. Annu. 
Rev. Psychol. 60, 53–85 (2009).

 44. Baxter, M. G. & Murray, E. A. The amygdala and reward. Nat. Rev. Neurosci. 
3, 563–573 (2002).

 45. Bowers, J. S. & Davis, C. J. Bayesian just-so stories in psychology and 
neuroscience. Psychol. Bull. 138, 389–414 (2012).

 46. Griffiths, T. L., Lieder, F. & Goodman, N. D. Rational use of cognitive 
resources: levels of analysis between the computational and the algorithmic. 
Top. Cogn. Sci. 7, 217–229 (2015).

 47. Sims, C. R. Efficient coding explains the universal law of generalization in 
human perception. Science 360, 652–656 (2018).

 48. Li, V., Michael, E., Balaguer, J., Herce Castañón, S. & Summerfield, C.  
Gain control explains the effect of distraction in human perceptual,  
cognitive, and economic decision making. Proc. Natl Acad. Sci. USA 115, 
E8825–E8834 (2018).

 49. Landry, P. & Webb, R. Pairwise normalization: a neuroeconomic  
theory of multi-attribute choice. SSRN https://doi.org/10.2139/ssrn.2963863 
(2017).

 50. Robson, A. J. The biological basis of economic behavior. J. Econ. Lit. 39, 
11–33 (2001).

Acknowledgements
R.P. thanks X.-X. Wei and A. Stocker for inspiring discussions. We thank S. Maier 
for providing us with the set of food images and C. Schnyder for research assistance. 
This work was supported by a grant of the Swiss National Science Foundation (grant 
IZK0Z1_173607) and an ERC starting grant (ENTRAINER) to R.P; by a grant of the 
US National Science Foundation to M.W.; and by grants of the Swiss National Science 
Foundation (grants 105314_152891 and 100019L_173248) and an ERC consolidator 
grant (BRAINCODES) to C.C.R. This project has received funding from the European 
Research Council (ERC) under the European Union’s Horizon 2020 research and 
innovation programme (grant agreement No 725355 and No. 758604).

Author contributions
R.P. and C.C.R. designed the study. R.P. collected and analyzed the data. All authors 
interpreted the results and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41593-018-0292-0.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to R.P. or C.C.R.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2018

NATURE NEUROSCIENCE | VOL 22 | JANUARY 2019 | 134–142 | www.nature.com/natureneuroscience142



ARTICLESNATURE NEUROSCIENCE

Methods
Participants. The study tested healthy young volunteers (total n =  127, age 19–37 
years, 55 females: n =  38 in experiment 1, 17 females; n =  37 new participants 
in experiment 2 (replication of results obtained in experiment 1), 14 females; 
n =  24 new participants in experiment 3, 11 females; and n =  28 new participants 
in experiment 4, 13 females). Participants were randomly assigned to each 
experiment. No data were excluded from the analyses. Sample size was determined 
based on previous studies using similar stimuli and tasks11,51. Participants were 
instructed about all aspects of the experiment and gave written informed consent. 
None of the participants suffered from any neurological or psychological disorder 
or took medication that interfered with participation in our study. Participants 
received monetary compensation for their participation in the experiment, in 
addition to receiving one food item in the decision-making task (see below). 
The experiments conformed to the Declaration of Helsinki and the experimental 
protocol was approved by the Ethics Committee of the Canton of Zurich.

For all experiments, participants were asked not to eat or drink anything for 
3 h before the start of the experiment. After the experiment, participants were 
required to stay in the room with the experimenter while eating the food item 
that they had chosen in a randomly selected trial of the decision-making task (see 
below). All experiments took place between 09:00 and 17:00. Our experiments did 
not include different conditions determined a priori by the experimenter, since 
the participants themselves sorted trials into conditions as a direct consequence 
of their ratings and choices given during the experiment. Blinding was therefore 
neither necessary nor possible.

Value rating task. Experiments 1 and 2 consisted of three main phases: (1) rating 
phase 1, (2) rating phase 2, and (3) the decision-making task. In rating phase 1, 
we asked the participants to provide subjective-preference ratings for a set of 64 
food items using an on-screen slider scale (Fig. 2a). All of the food items were in 
stock in our lab and participants were notified about this. Importantly, participants 
saw all food products before the ratings so that they could effectively use the 
full range of the rating scale. Moreover, participants knew that all products were 
randomly drawn from the two biggest supermarkets in Switzerland. Based on 
pilot measurements and previous studies11,51 in our lab, we selected food items that 
varied all the way from items that most participants would find unappealing (for 
example, raw broccoli) to items that most participants would find highly appetitive 
(for example, ice cream). This was important as our model should capture the full 
range of subjective values that humans typically assign to food items on a daily 
basis. During the ratings, participants indicated ‘how much they wanted to eat the 
presented food item at the end of the experiment’. The slider scale was continuous 
in experiment 1 with no numbers displayed (Fig. 2a), whereas the rating scale in 
experiment 2 was divided in 20 steps of equal size with numbers displayed under 
each step (Fig. 2a). This was done to ensure that the effects observed in experiment 
1 did not reflect the absence of reference points in the middle of the rating scale. 
Participants were informed that the rightmost endpoint would indicate items that 
they would most love to eat, whereas the leftmost endpoint would indicate items 
that they would most hate to eat. The initial location of the slider was randomized 
for each item to reduce anchoring effects.

Rating phase 2 was identical to rating phase 1 and took place immediately 
after phase 1. The order of the items’ presentation was randomized. Crucially, 
participants were not informed before the rating phase 1 that a second rating  
phase and a decision-making task would take place. This was important as it 
prevented participants from actively memorizing the location of the rating in  
the slider in the first phase, thus providing us with a clean measure of the 
variability in the value estimates.

In experiment 3, participants provided value ratings as in experiment 1, but 
for the first round of ratings, half of the goods were presented with a duration of 
900 ms and the second half with a duration of 2,600 ms. For the second round of 
ratings, the presentation durations were inverted for each good. The exposure 
time (900 ms or 2,600 ms) was pseudo-randomly selected for each good in the first 
round of ratings, and participants did not know in advance for how long they were 
going to see each specific food item. The rating scale appeared only once the image 
disappeared from the screen (see Fig. 1a), and the participants were instructed to 
provide their rating as fast as possible (mean RTs 1.53 ±  0.45 and 1.39 ±  0.4 for low 
and high exposure times, respectively). Crucially, participants were not informed 
in advance about the details of the time manipulations.

In experiment 4, participants provided value ratings as in experiment 1, but 
indicated after each rating their confidence in their first-order rating (Fig. 4a).  
Following procedures of previous work15, we informed participants that the 
leftmost side of the rating scale means ‘not at all’ confident and the rightmost side 
means ‘totally’ confident.

Choice task. For experiments 1 and 2, immediately after the two rating phases, 
an algorithm selected a balanced set of decision trials divided into four value 
difference levels on the rating scale (rating difference ~5%, ~10%, ~15%, and ~20% 
of the length of the rating scale), as defined by the average rating across phases 1 
and 2 provided by each participant. Decision-making trials started with central 
presentation of a fixation cross for 1–2 s. Immediately after this, two food items 
were displayed simultaneously, one in the upper and one in the lower hemifield 

(Fig. 2a). The food items were presented until response and participants had up 
to 4 s to make a choice. Participants were instructed to choose which of the two 
items (upper or lower) they preferred to consume at the end of the experiment. 
To make these choices, participants pressed one of two buttons on a standard 
keyboard with their right-index finger (upper item) or their right thumb (lower 
item). In experiments 1 and 2, we defined a consistent choice as a trial in which the 
subject chose the item with a higher mean rating from the prior rating phase. Each 
experimental session comprised a maximum of 240 trials (this depended on the 
rating distribution of each participant) divided into 6 runs of 40 trials each. The 
trials were fully balanced across rating-difference levels (~5%, ~10%, ~15%, and 
~20% of the length of the rating scale) and location of consistent response option 
(up or down).

Model. We assume that the presentation of an object with stimulus value v 
elicits an internal noisy response r (encoding) that the observer uses to generate 
a subjective value estimate ̂v r( )—the decoded stimulus value. At the encoding 
stage, a function F(v) maps the stimulus space to a new space where the Fisher 
information is uniform over the entire real line. This requires the definition

∫ χ χ= >F v p v( ) ( )d for 0 (2)
v

0

∫ χ χ=− <F v p v( ) ( )d for 0 (3)
v

0

where p(χ) is an improper prior distribution, so that F(v)→ ∞  as v→ ∞ , and 
F(v)→ − ∞  as v→ − ∞ . We assume that conditional on the value v, an internal noisy 
(neural) response is generated

δ= +r F v( ) (4)

with δ ~ N(0, σ2), where σ measures the degree of noise in the internal 
representation that is constant over all possible values F(v). We also note that 
the prior distribution for possible values of F(v) is uniform on the real line. The 
posterior mean estimate of F(v) (the estimator that minimizes mean squared error) 
is then given by

̂ = + ϵ−v r E F r( ) [ ( )] (5)1
1

with σϵ ~N(0, )1
2 . Here E[.] means the expectation over possible values of ϵ1. This 

estimator is a deterministic function that maps each measurement r to an estimated 
subjective value ̂v r( ); this deterministic mapping therefore cannot account for trial-
to-trial fluctuation in the value estimates. The variability in the value estimates 
arises because of the variability in the measurement r on each trial. Accounting for 
this variability, it follows that for any true stimulus v0, the mean estimate should be 
given by

∣̂ = + ϵ + ϵ−E v v E F F v[ ] [ ( ( ) )] (6)0
1

0 1 2

with σϵ ~N(0, )2
2 . E[.] now means the expectation over possible values of 
σϵ + ϵ ~N( ) (0, 2 )1 2
2 . In the small-noise limit, we can take a second-order Taylor 

expansion:

ϕ ϕ+ ϵ ≈ + ′ × ϵ + ′′ × ϵ− −F F v F F v( ( ) ) ( ( )) (1 / 2) (7)1
0

1
0

2

where ϵ ≡ ϵ + ϵ1 2, ϕ ̃ ≡ ̃−v F v( ) ( )1 , and the derivatives of ϕ ̃v( ) are evaluated at 
̃ =v F v( )0 0 . Taking the expected value over possible realizations of ϵ1 we obtain

ϕ ϕ σ^ ≈ + ′ × ϵ + ′′ × + ϵv v (1 / 2) ( ) (8)0 2
2

2
2

Conditional on a particular stimulus value v0, this is a random variable with 
expected value

ϕ σ^| ≈ + ′′ ×E v v v[ ] (9)0 0
2

and variance

ϕ σ^| ≈ ′ ×v vVar[ ] ( ) (10)0
2 2

If we approximate this distribution by a normal distribution with the mean and 
variance just calculated above, we would obtain a probability density for ̂v given by

θ σ ϕ σ ϕ σ^ = ^ + ′′ × ′ ×p v v N v v( ; , , ) ( ; , ( ) ) (11)0 0
2 2 2

where θ is a set of parameters of the prior distribution (see below). This expression 
is the likelihood of a given subjective value estimate ̂v conditioned on a true 
stimulus value v0. If one wants to write the joint likelihood of a pair of values ̂v v( , )0  
occurring when v0 is drawn from the prior, one obtains
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In addition to internal noise in the coding of value σ, we also account for 
late noise in the decision stage (that is, post-decoding noise), which may capture 
any unspecific forms of downstream noise occurring during the response 
process that are unrelated to valuation per se. We assume this late noise to be 
normally distributed; therefore, it can be easily added to our model as follows (see 
Supplementary Note 1 for further discussion on the different sources of noise)

θ σ σ ϕ σ ϕ σ σ^ = ^ + ′′ × ′ × + × ′p v v N v v F v( ; , , , ) ( ; , ( ) ) ( ) (13)joint
0 ext 0

2 2 2
ext 0

The last part of the model defines the probability distribution in the space of 
the bounded rating scale. Without loss of generality, we assume that this scale is 
bounded from 0 to 1, with a monotonic mapping of subjective preference values 
that preserves preference ordering. Transforming the unbounded internal scale 
to this bounded physical scale requires a mapping that preserves monotonicity. 
A convenient and relatively simple function allowing this transformation is the 
logistic function ˘ = ^ = + −^v g v e( ) 1 / (1 )v , which provides a one-to-one mapping 
of the estimate ̂v from the subjective to the physical scale on any given trial. The 
implied joint probability density v̆ v( , )0  on the rating scale is thus given by

θ σ σ ϕ σ ϕ σ σ˘ ˘ = ˘ + ′′ × ′ × + × ′ × ˘ ′− −p v v N g v v F v g v( ; , , , ) ( ( ) ; , ( ) ) ( ) ( ( )) (14)0 ext
1

0
2 2 2

ext 0
1

Here the inverse mapping of the subjective to the unbounded scale is given by

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

=
−

−g v v
v

( ) log
1

(15)1

and its first derivative is

˘ =
˘ − ˘

− ′g v
v v

( ( )) 1
(16)1

2

Recall that we are assuming here that the decision-maker maximizes mutual 
information between the input stimulus and the noisy measurement, therefore F(v) 
is defined as the cumulative density function (CDF) of the prior distribution p(v). 
Here we assume that the prior follows a logistic distribution

μ μ= − ∕p v s
s

v s( ; , ) 1
4
sech (( ) (2 )) (17)2

where μ and s represent the mean and scale, respectively. The advantage of using 
this distribution is that its CDF and both the first and the second derivative of 
the quantile function have closed-form solutions; however, any similar prior 
distribution could be used without greatly affecting the quantitative predictions 
presented here. F(v), ϕ ̃ ′v( )  and ϕ ̃ ′′v( )  are given by:

⎛
⎝
⎜⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟
⎞
⎠
⎟⎟⎟

μ= + −F v v
s

( ) 1
2

1 tanh
2

(18)

ϕ ̃ ′ =
̃ − ̃

v s
v v

( )
(1 ) (19)

ϕ ̃ ′′ = −̃
̃ − ̃

v s v
v v

( ) (2 1)
(1 )

(20)2 2

Thus, for any experimental dataset consisting of M goods and N value ratings 
for each good, we can find the set of parameters of the prior, the internal valuation 
noise σ, external noise σext, and the ‘true’ stimulus values ⋯v M(1, , )  that maximize 
the likelihood of the observed set of ratings (under the constraint that ⋯v M(1, , )  is 
distributed following p(v)).

To compute choice consistency predictions that an experimenter would obtain 
when performing such analysis in the rating scale (Fig. 1b,c), we first computed for 
a fine-grained sequence of subjective values v0 their corresponding expected value 
and variance perceived in the rating scale (if we assume that the experimenter can 
obtain a large number of ratings for each good) via

∫μ ϕ σ ϕ σ σ= × ^ + ′′ × ′ × +˘ g v N v v v( ) ( ; , ( ) )d (21)v 0
2 2 2

ext

and

∫σ μ ϕ σ ϕ σ σ= − × ^ + ′′ × ′ × +˘ ˘g v N v v v[ ( ) ] ( ; , ( ) )d (22)v v
2 2

0
2 2 2

ext

where the subscript v̆( ) reflects the expected value (μ v̆) and variance (σv̆
2) at 

position v̆ in the rating scale. We then looked for expected values μ v̆  closer to 

the values [0.1, 0.11, 0.12, …  0.89, 0.9] and used their corresponding variance to 
approximate the level of choice consistency as follows:

⎡

⎣

⎢
⎢
⎢

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎤

⎦

⎥
⎥
⎥

Φ
μ μ
σ σ

Φ
μ μ
σ σ

−
+

+
−

+
δ

δ

δ

δ

˘+ ˘

˘+ ˘

˘ ˘−

˘− ˘
/ 2 (23)v v

v v

v v

v v

with δ =  0.05 (note that different values of δ move the accuracy curve up or down but 
do not affect the general U-shaped curve obtained in our predictions; see Fig. 1b,c).

Behavioral analyses and statistics. Preference-rating variability in experiments 
1 (n =  38), 2 (n =  37), and 4 (n =  28) was computed as the standard deviation for 
each item across the rating phases 1 and 2. To visualize this effect, we plotted 
the standard deviation as a function of the mean rating (Figs. 2b,c and 4b). To 
investigate the influence of both value difference (VD) and rating variability on 
the consistency of choices (Fig. 2d), we performed a hierarchical logistic mixed-
effects regression of choices (defining consistent =  1, inconsistent =  0) on three 
main regressors of interest, namely: value difference, summed-variability (Var, 
defined as the sum of the two standard deviations of the two food items presented 
in each trial), and the summed-value (OV, defined as the sum of mean rating 
values of the two food items presented in each trial). All regressors of interest 
were included in the same model. Similarly, all the population-level regressions 
described for experiment 4 were based on a hierarchical linear mixed-effects 
regression approach. All mixed-effects regressions in this study had varying 
subject-specific constants and slopes (that is, we performed random-effects 
analyses). Posterior inference of the parameters in the hierarchical models was 
performed via the Gibbs sampler using the Markov chain Monte Carlo technique 
implemented in JAGS52, assuming flat priors for both the mean and the noise 
of the estimates. For each model a total of 10,000 samples were drawn from an 
initial burn-in step and subsequently a total of new 10,000 samples were drawn 
with three chains (each chain was derived based on a different random number 
generator engine, and each with a different seed). We applied a thinning of 
10 to this final sample, thus resulting in a final set of 1,000 samples for each 
parameter. We conducted Gelman–Rubin tests53 for each parameter to confirm 
convergence of the chains. All latent variables in our Bayesian models had 

̂ < .R 1 05, which suggests that all three chains converged to a target posterior 
distribution. We checked via visual inspection that the posterior population-level 
distributions of the final Markov chain Monte Carlo chains converged to our 
assumed parametrizations. The ‘P values’ reported for these regressions are not 
frequentist P values but instead directly quantify the probability of the reported 
effect differing from zero. They were computed using the posterior population 
distributions estimated for each parameter and represent the portion of the 
cumulative density functions that lies above/below 0 (depending on the direction 
of the effect). The regressions across participants reported for experiments 1, 2, 
and 4 were computed using robust linear regressions using the rlm function54 
implemented in the statistical computing software R55.

To fit the efficient-coding model to the rating data in experiments 1, 2, and 4, 
we found the stimulus values ⋯v M(1, , ) , parameters of the prior θ, encoding noise σ, 
and external noise σext that maximized the likelihood function θ σ σ˘p v v( ; , , , )m m ext  of 
the observed set of ratings for each participant under the constraint that ⋯v M(1, , )  
is distributed following p(v;θ) (Supplementary Fig. 1). Alternatively, defining 
̃≡v F v( ), one can find the values estimates in the efficient space ̃ ⋯v M(1, , )  under the 

constraint that these are uniformly distributed. Using either approach, we found 
nearly identical results for the fitted parameters, which is expected for correct 
model specification. Posterior inference of the parameters for this model can be 
conveniently performed via the Gibbs sampler.

We used the stimulus values ⋯v M(1, , )  and prior parameters θ fitted to the  
rating to predict choices in the two-alternative choice task in experiments 1 and 2.  
Following our modeling specification, over many trials the probability that an 
agent chooses an alternative with stimulus value v1 over a second alternative with 
stimulus value v2 is given by:

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
Φ

σ

̂ > ̂ ∣ =

̂ ∣ − ̂ ∣
̂ ∣ + ̂ ∣ +

P v v v v

E v v E v v

v v v v

( , )

[ ] [ ]

Var[ ] Var[ ] 2

(24)

1 2 1 2

1 1 2 2

1 1 2 2 ext
2

where Φ() is the CDF of the standard normal distribution and the expressions 
for E[.] and Var[.] are given in equations (9) and (10) (see above). In other 
words, the input values of the choice model are fully constrained by the 
efficient-coding model based on the fits to the rating data and therefore the 
choice model has only two free parameters, namely the resource noise of the 
encoder σ and the external noise σext. Fits to the choice data were performed via 
the Gibbs sampler using a hierarchical Bayesian model assuming flat priors for 
both noise terms. When evaluating different models, we are interested in our 
model’s predictive accuracy for unobserved data, thus it is important to choose 
a metric for model comparison that considers this predictive aspect. Therefore, 
to perform model comparison, we used a method for approximating leave-one-
out cross-validation that uses samples from the full posterior56. The smaller the 

θ σ ϕ σ ϕ σ^ = ^ + ′′ × ′ × × ′p v v N v v F v( ; , , ) ( ; , ( ) ) ( ) (12)joint
0 0

2 2 2
0
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leave-one-out cross-validation, the better the fit. We found that in experiments 
1 and 2, the best model was the efficient-coding model. Crucially, this finding is 
fully replicated when using a different Bayesian metric such as the Watanabe–
Akaike information criterion (wAIC)56. Description of the different choice 
models tested here is presented in Supplementary Note 1.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Code to infer subjective values and prior parameters based on 
rating data is provided in the Supplementary Software.

Data availability
The data that support the findings of this study and the analysis code are available 
from the corresponding author upon reasonable request.
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