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Abstract

This paper illustrates how fluctuations in aggregate economic activity
can result from many small, independent shocks to individual sectors.
The effects of the small independent shocks fail to cancel in the aggregate
due to the presence of two non standard assumptions: local interaction
between productive units (linked by supply relationships), and non-convex
technology. We also argue that neither feature on its own would suffice.
In the case of a simple model, we explicitly calculate the distribution
of aggregate activity in the limit of an infinite number of independent
disturbed sectors.

1 Introduction

Explaining the observed instability of economic aggregates is a long-standing
puzzle for economic theory. A number of possible reasons for variation in the
pace of production are easily given, such as stochastic variation in the timing of
households’ desired consumption of produced goods, or stochastic variation in
the costs of production. But it is hard to see why there should be large variations
in those factors that are synchronized across the entire economy – why most
households should want to consume less at exactly the same time, or why most
firms should find it an especially opportune moment to produce at the same
time. Instead, it seems more likely to suppose that variations in demand or in
production costs in different parts of the economy should be largely independent.
∗We would like to thank the Economics program of the Santa Fe Institute, where this

research was initiated, and the National Science Foundation for research support. We would
also like to thank Hans Fogedby, Boyan Jovanovic, Benoit Mandelbrot, and Sid Nagel for
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Thus, one might ask, should one not expect these local variations to cancel out,
for the most part, in their effects on the aggregate economy, due to the law
of large numbers? Fluctuations in activity of macroeconomic significance, it
might be thought, should occur only when many independent shocks happen by
coincidence to have the same sign, and this should be an extremely unlikely event
(with the probability of occurrence decreasing exponentially with the square of
the size of the event, by the central limit theorem). 1

The conventional response is that aggregate shocks are needed as the source
of business cycles, i.e., large exogenous events that affect all parts of the economy
in a similar way. Especially important candidates are changes in government
policy that affect financial markets, and through them the entire economy, or
that affect the budgets of many people in the economy at once. But the signif-
icance of changes in monetary and fiscal policy as a source of aggregate shocks
has been challenged in much recent work. It is argued, for instance, that self-
interested economic agents should respond to changes in either the government
deficit or in the quantity of money in circulation in ways that neutralize the
effects of these policy shocks (increasing saving to absorb increased issuance of
government debt, varying the level of money prices to keep the real money supply
unchanged), without requiring any change in the production and consumption
of goods and services. As a result much work in business cycle theory in the last
decade has instead emphasized aggregate shocks to the production technology
or to household preferences; but these are types of disturbances which do not
obviously have an aggregate character. 2

An alternative approach suggested in some recent work proposes that economies
possess intrinsically unstable dynamics, that even in the absence of external
shocks would result in persistent deterministic fluctuations, such as a limit cy-
cle, or even deterministic “chaos”. 3 A problem with this type of model is that it
implies that aggregate fluctuations should involve motion on a low-dimensional
attractor. Yet analysis of economic time series has not revealed structure of
this kind. In particular, statistical tests intended to measure the dimension of
the attractor do not find evidence of a low dimension, at least insofar as the
question can be settled with short time series of the kind available in economics.
4 The irregularity of economic time series would seem to require an explanation
of another sort.

Here we pursue an alternative type of explanation. Our proposal is that the
effects of many small independent shocks to different sectors of the economy do
not cancel out in the aggregate, due to absence of the kind of linear aggregation
of shocks required for the law of large numbers to apply. The conventional rea-
soning fails as a result of significantly nonlinear, strongly localized interactions

1For an important early discussion of this problem in economic theory, see Jovanovic (1987).
2The issue is sidestepped in most recent work in business cycle theory by the assumption

of a single representative firm and a single representative household. See, e.g., Kydland and
Prescott (1982). Long and Plosser (1983) consider a multi-sector model, but their model has
the property that aggregate randomness disappears if the number of sectors is made large, for
reasons of the kind that we sketch in section 3.

3For a survey of this literature, see Boldrin and Woodford (1990).
4For a survey of the empirical work on this issue, see Scheinkman (1990).
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between different parts of the economy. The type of macroscopic instability that
can result has been studied in variety of previous contexts, under the name of
“self-organized criticality.” We discuss applications of this idea in physics and
elsewhere in the following section.

We illustrate the idea here in the context of an extremely simple model of
a multi-sector, multi-stage production process. A large number of production
units each buy goods from and sell goods to a small number of “neighboring”
production units, using the goods they buy to produce the goods they sell. The
significantly nonlinear interaction between “neighborin” units’ decisions results
from non-convexities in the production technology, that are important at the
level of the production unit, though not on the scale of the aggregate economy.
The exogenous shocks that drive the economy are independent fluctuations in
flow demands for a large number of different types of final goods. In the limit
as the number of sectors is made large, the aggregate flow demand for final
goods becomes steady. Yet the resulting distribution of levels of aggregate
production (appropriately scaled) converges to a Pareto-Levy distribution. 5

Hence the variability of aggregate production (as measured, for instance, by
the ratio of the inter-quartile range to the median) does not vanish even in
the limit of an unboundedly large number of sectors subject to independent
shocks. Furthermore, not only is the limiting distribution not a constant, it
is a distribution with the property that the probability of large events falls off
only algebraically, rather than exponentially, with the size of the event. Thus
very large fluctuations are predicted to occur surprisingly often. Both features
of this result illustrate the important consequences of taking account of the
nonlinearity of the interactions between neighboring units.

2 Self-Organized Critical Systems

The dynamics of large interactive systems has been much studied by physicists
concerned with the properties of condensed matter. In a variety of contexts,
physicists have noted the possibility of a “critical state”, in which independent
microscopic fluctuations can propagate so as to give rise to instability on a
macroscopic scale. In a “subcritical” state, changes in one part of the system
have a sufficiently weak effect upon neighboring parts that the state in different
regions of the system is correlated only over short distances. The correlation
falls off exponentially with distance, and if one looks at average behavior over a
region that is large compared to the “correlation length” (inverse of the rate of
decay of correlation with distance), spontaneous fluctuations are not observed.
On the other hand, when some parameter of the system is “tuned” to an appro-
priate value, a “critical” state may be reached, in which the correlation between
parts of the system ceases to decay exponentially with distance, and in which
spontaneous macroscopic fluctuations may be observed in a system of arbi-

5For the classical discussion of the type of distribution we refer to, and the generalization
of the central limit theorem upon which our results depend, see Levy (1925, 1954). For further
discussion, and applications to economic data, see Mandelbrot (1960, 1963, 1964).
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trary size. The spontaneous magnetization of a ferromagnetic material when its
temperature drops to the Curie point is a classic example of the phenomenon.
Beyond the critical point (i.e., below the Curie point), a new structure forms
that again does not exhibit macroscopic fluctuations, but at the critical point
itself macroscopic fluctuations are possible in the absence of an external pertur-
bation, and even arbitrarily small external perturbations can have large effects
upon the macroscopic state (e.g., imposition of a weak external magnetic field
can determine the direction of polarization of the ferromagnet).6

The problem with this as a model of spontaneous macroeconomic instability
is that, traditionally, critical states were thought to be associated with certain
“critical” parameter values (such as the temperature in the example just men-
tioned), that would almost certainly not occur in any existing system unless
they were “tuned” to be at the critical value in a laboratory experiment. 7 But
more recently, it has been argued that large interactive dynamical systems can
“self-organize” into a critical state (Bak, Tang, and Wiesenfeld, 1988). That
is, the critical state can actually be an attractor for the dynamical system, to-
ward which the system naturally evolves, and to which it returns after being
perturbed by some large external shock.

The prototypical example of such “self-organized criticality” is a sand pile
(Bak and Chen, 1991). When the slope of the pile is nowhere too steep, dropping
on additional grains of sand at randomly chosen sites will have no macroscopic
effects (though of course it modifies the shape of the pile in the immediate area in
which a grain is dropped), as at most small numbers of grains will shift position
in each case. However, randomly dropping on additional sand will result in the
slope of the pile increasing to a critical slope, at which point avalanches of all
sizes (limited only by the size of the pile) can occur in response to the dropping
of a single additional grain of sand. A sandpile with a slope that is initially
greater than the critical slope also evolves toward it, in this case through an
immediate large avalanche that collapses the pile to a flatter and more stable
configuration. The existence of the self-organized critical state is robust not
only to perturbations of the initial shape of the pile, but to changes in the type
of sand used (although differently shaped grains will change the value of the
critical slope). This sort of robustness makes such a state a plausible model of
spontaneous macroscopic instability in systems observed in nature.

Self-organized critical systems have been proposed as models of a variety
of physical phenomena, including earthquakes (Bak and Tang, 1989), volcanic
eruption (Diodati et al., 1991), and turbulence. The greatest success of the the-
ory thus far has been its explanation of the famous Gutenberg-Richter (1956)
law for the size distribution of earthquakes. Applications to biological phe-
nomena have also been proposed (Bak, Chen and Creutz, 1991; Kauffman and
Johnson, 1991).

6See, e.g., Stanley (1971). For an elementary discussion, see Prigogine (1980, chap. 6).
7Jovanovic’s (1987) examples of economic models in which independent sectoral shocks

produce aggregate fluctuations no matter how large the number of sectors, which do not
depend upon the local interaction or non-linear interaction that we stress here, are special in
exactly this sense.
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Here we demonstrate the possible occurrence of a self-organized critical state
as a result of factor demand linkages between sectors in a large economy. We
begin with some general remarks about production scheduling and inventory dy-
namics, with particular emphasis upon the conditions under which independent
sectoral variations in the flow of orders for final goods can give rise to sizeable
fluctuations in aggregate production.

3 Sectoral Order Flows and Aggregate Produc-
tion

In this section we motivate the type of structure analyzed subsequently. We
begin with some general observations about the consequences for aggregate
economic activity of a large number of independent small fluctuations in fi-
nal product demand. We argue that one needs both of the special features of
our model – one the one hand, local interaction (each unit’s production deci-
sion depends only upon the actions of a small number of other units that deal
directly with it), and on the other hand, significant nonlinearity in producers’
responses to demand variations – in order to obtain significant fluctuations in
aggregate production.

In much macroeconomic analysis, the entire economy is modeled as a single
market, in which the aggregate of all producers jointly supply goods to fulfill
the aggregate demand of all consumers. It is assumed that only the joint pro-
ductive capacity of all of the producers (described by an “aggregate production
function”) matters for describing the relation between final goods sales and pro-
ducers’ demands for primary inputs. Production is scheduled so as to minimize
the costs of aggregate production. Because production possibilities exhibit di-
minishing returns to scale, the aggregate cost function is convex. (Specifically,
we assume that both the direct cost of current production as a function of the
flow rate of production, and the cost of carrying inventories as a function of
the stock of inventories held, are increasing convex functions.) The consequence
is that the cost- minimizing production plan makes production at each point
in time a continuous function of the aggregate order flow. 8 Small variations
in the aggregate order flow for final goods can then produce only small vari-
ations in aggregate production. But if the variations in final goods order are
the aggregate of independent fluctuations in the demand of a large number of
distinct final consumers, then there will be little variability in aggregate final
goods orders. Furthermore, optimal production scheduling will make aggregate
production even smoother than aggregate final sales, as inventory variations will
be used to at least partially buffer variations in sales.

There are good reasons, however, to dispute the realism both of the assump-
tion of a single aggregate market on the one hand, and of the assumption of

8One obtains, along standard lines, a continuous policy function from a concave discounted
dynamic programming problem. For examples of the kind of theory of production scheduling
in the face of stochastic final demand that we have in mind, see, e.g., Kollintzas (1989).

5



convex costs on the other. Yet we will argue that the picture is essentially the
same, until both of the standard assumptions are modified.

It is obvious that actual economies are made of a large number of markets
for distinct differentiated goods, especially when markets in different locations
are treated as markets for distinct goods. It is likewise obvious that individual
producers each buy from a small number of suppliers and sell to a small number
of customers (if they are not producers of final consumer goods), where in
each case we mean “small” compared to the total number of producers in the
economy. The question is whether this pattern of local interaction matters
for the analysis of aggregate fluctuations. In fact, introducing local interaction
doesn’t change our above conclusion materially, as long as we continue to assume
convex costs.

Consider an economy made up of a large number of productive units, each
of which supplies only a small number of customers, and in turn buys from
only a small number of suppliers. For the sake of concreteness, we will suppose
that the productive units are located on a cylindrical lattice like that shown
in Figure A, with L rows and L units per row. Each unit buys supplies from
the two units immediately below it, except the units in the bottom row, that
purchase only primary inputs (that are produced without using any produced
inputs, and the producers of which are therefore not represented on our lattice).
Each unit correspondingly sells to the two firms immediately above it, except
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the units in the top row (final goods producers), that sell only to final consumers
(who do not purchase goods as inputs for further production, and so are also not
represented on the lattice). We wish to consider the fluctuations in production
that occur in response to independent, stochastic fluctuations in the flow of
purchases of the L distinct types of final goods.

Here we abstract from issues of pricing, for simplicity. That is, we assume
fixed prices for each good, at which the supplier of that good stands ready to sell
at all times. Because we assume that production is instantaneous once inputs
are purchased, each unit is always able to immediately replenish its inventories
if necessary to fill an order. It follows that all production units are constrained
in the quantity that they can sell at any given time, but not in the quantity of
inputs that they can purchase. Each unit’s decision problem is then simply the
scheduling of production (and the associated orders to its suppliers of inputs),
given the random flow of orders that it receives. Each unit solves this problem
so as to minimize the (discounted) sum of its direct costs of production and its
costs of holding inventories.

The independent fluctuations in the demands for the different final goods
are the sectoral “shocks” with which we will be concerned; they are small with
respect to the aggregate if each final demand is an independent random variable
with finite variance and L is large. We wish to consider a limiting case in which
L becomes large, while the size of the random fluctuations in the flow demand
for each final good remains the same. 9 We will consider what happens to the
variability of aggregate production in the limiting case.

Let us first consider aggregate production by final goods producers. Since
the fluctuations in the different producers’ order flows are assumed to be inde-
pendent, their production levels will fluctuate independently as well. Assuming
similarly distributed bounded fluctuations in the production of each final good,
aggregate production by final goods producers ceases to be variable as L is made
large. 10

Next consider aggregate production by producers whose immediate cus-
tomers are final goods producers (i.e., units in the second row of the lattice).
Now distinct producers’ order flows are not completely independent, as any
given final goods producer will always simultaneously order inputs from two
neighboring units in the second row. But each producer’s order flow (and hence
his production decision as well) will be independent of that of all producers

9Here we do not necessarily mean that the distribution of flow demands for each final
good remains the same as L increases; in fact this is not true for the sequence of economies
considered in the following section. But it is true in that example that the bounds upon
the distribution of possible order flows to each final goods producer remains the same as L
increases, and that the maximum possible fluctuation in orders to an individual unit eventually
becomes an arbitrarily small fraction of the average value of aggregate final goods orders.

10For example, if the distribution of orders to each final goods producer remains the same as
L increases, mean aggregate final goods production grows as L, while final goods production
per sector is a random variable whose mean is independent of L and whose standard deviation
falls as L−1/2. In the example considered in the next section, mean aggregate final goods
orders grow only as L(1−γ). In this case, aggregate final goods production scaled by L(1−γ)

is a random variable whose mean is independent of L and whose standard deviation falls as
L−(1−γ)/2.
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except the two units immediately adjoining it in the lattice. Thus the number
of units with which any given unit is correlated becomes an arbitrarily small
fraction of the total number as L is made large. Furthermore, the correlation
between the variations in production by two adjoining units is less than perfect,
and remains the same as L increases. Then a central limit theorem still applies
in the case of limited dependence of this kind, and aggregate production by
units in the second row also ceases to be variable as L becomes large. A similar
argument applies for any given row i in the lattice.

Consider, instead, aggregate production by producers whose distance back in
the production chain remains large compared to L, even as L increases. (After
all, it is always the case that half the producers in the economy described are
in rows i > L/2.) In this case, the demand faced by each intermediate goods
producer depends (indirectly) upon the flow demand for final goods (currently
and in the past) of many different sectors (all of its buyers’ buyers’ ... buyers)
– in fact, of i different sectors. And a significant fraction of the other units in
the same row will face demands that depend upon the demand for final goods
in many of the same sectors. Hence a given unit’s order flow (and hence its
production decisions) may be significantly correlated with those of a significant
fraction of other units in its row, even for arbitrarily large L. However, the
order flows (and hence the production decisions) of these units should become
less and less variable as L increases. If costs are convex, each unit’s optimal
current production will be a continuous function of its current order flow and
current inventory. In the case of smooth costs and order fluctuations of only
moderate size, the optimal response is well approximated by a linear function,
so that current production can be written as a linear function of current and
past orders from the unit’s immediate customers. 11 A linear response function
of this kind at each stage of production implies that each unit’s production will
depend only upon the aggregate final goods orders received by all of the unit’s
buyers’ buyers’ ... buyers, and upon past values of that aggregate. Then for large
L this is the sum of a large number of bounded, independent random variables,
and so a quantity with little variation relative to its average value. Furthermore,
this reduction in the variability of production by each unit more than offsets
the increased correlation between neighboring units (and the increased range of
the correlation) as one goes back farther in the production chain. For assuming
identical linear response functions for each unit, aggregate production in row i
can be expressed as a linear function of current and past aggregate levels of final
goods orders. The variability of aggregate final goods orders decreases with L,
as discussed above. Furthermore, the farther back in the production chain one
goes, the smaller the weight on current final goods orders and the longer the
period of time over which past final goods orders are averaged in determining
current production; hence aggregate production is actually less variable the
farther back one goes. 12 It follows that as L increases, the variability of

11In the literature on production scheduling with convex costs, it is common to derive
exactly linear response functions by assuming quadratic costs. See, e.g., Kollintzas (1989).

12Not only does this model make it difficult to understand why sizeable aggregate fluctua-
tions are observed; it also predicts, counterfactually, that the demand for final goods should
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aggregate production (summing production by units at each of the stages of
production) falls even faster than does the variability of aggregate final goods
orders.

Another oversimplification in the standard macroeconomic model is the as-
sumption of a convex production technology. Non-convex costs are in fact per-
vasive, due for example to indivisibilities – a significant part of the variation
in plants’ output occurs through starting and stopping of the operation of an
entire assembly line or an entire shift. 13 The cost function associated with
such indivisibilities may look something like the one shown in Figure B. 14 In
such a case, average production costs are minimized by alternating between
production at points A and B, given an average flow rate of sales less than B
per period. Such non- convexities are now widely recognized to be important
factors in production scheduling and inventory management at the plant level,
where the empirical inadequacy of the “production smoothing” model described
earlier has become evident. 15 More disputed is what significance, if any, such
plant-level non-convexities have for macroeconomics.

be much more variable than the demand for intermediate goods, which is in turn more vari-
able than the demand for primary inputs. Exactly the opposite appears to be observed, as is
particularly evident from the greater cyclical variability of prices the farther back one goes in
the production chain. See, e.g., Murphy, Shleifer, and Vishny (1989). This is another puzzle
that can be resolved by the model proposed here, although, as we do not consider endogenous
price variation, the greater variability of demand for less finished goods shows up in our model
as more variability in aggregate sales of such goods.

13See, e.g., Davis and Haltiwanger (1990), Cooper and Haltiwanger (1992), or Bresnahan
and Ramey (1992).

14Here we simply depict the direct costs of current production. Our remarks here about the
consequences of indivisibilities for production scheduling do not depend critically upon the
nature of the costs of carrying inventories, as long as these are not too large for inventories
of the size associated with a production run of the size indicated by point B. In the model in
the following section, this kind of non-convex function for direct production costs is combined
with a standard convex function for the costs of holding inventories.

15See, e.g., Blinder and Maccini (1991).
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In fact, plant-level non-convexities also have little effect on our argument
for the case of a simple aggregate model, if we continue to assume that there
exists, in effect, a single market for a single good, and that the economy’s to-
tal production possibilities are mobilized efficiently to meet aggregate demand.
The non-convex costs in Figure B can obviously lead, in principle, to fluctu-
ations in production that are larger than fluctuations in sales; one can even
have fluctuating production in the case of a completely steady order flow (with
periodic bursts of production to replenish inventories). But such a model can
only explain aggregate fluctuations if the indivisibilities are large compared to
the size of the whole economy. The standard argument for ignoring plant-level
non-convexities is that even when each plant has a technology of this kind,
aggregate production possibilities are well approximated by a convex cost func-
tion, if each plant is small compared to the scale of aggregate production. In
the limiting case of a continuum of non-atomic plants (all producing the single
good), the aggregate cost function is linear, regardless of the shape of the cost
function for individual plants (assuming that increasing returns are exhausted
for production by each plant above some efficient scale of operation). Hence
one may argue that the effects of a fluctuation in aggregate sales should still be
approximately as in the model with convex costs.

Thus neither local interaction nor non-convexity poses in itself a serious ob-
jection to the conventional result. We will show, however, that those two factors
in conjunction with one another can yield very different results. Severely nonlin-
ear local interactions, due to non-convexities at the level of the productive unit,
result in non-additive aggregation of the effects of shocks to different sectors,
with the result that the law of large numbers does not apply.

10



4 The Model

In our model, productive units are located on a cylindrical lattice, as shown in
Figure A, and each has a production technology of the kind shown in Figure B.
Each unit can be given coordinates (i, j), where i, j = 1, 2, ..., L. Here i is the row
number, j is the column number, and we use modulo-L arithmetic for columns.
Then unit (i, j) purchases goods from two suppliers, (i+ 1, j) and (i+ 1, j + 1),
if i < L; and sells goods to two customers, (i− 1, j) and (i− 1, j − 1), if i > 1.

We assume a production technology in which average production costs are
minimized by producing batches of two units of the good each time that produc-
tion occurs (i.e., point B in Figure B represents production of two units). We
also assume that the expected time to arrival of the next order is small enough,
relative to the rate at which future costs are discounted, so that even with dis-
counting it is always optimal to produce two units at a time. Production of two
units of output is assumed to require two units of inputs, one from each of the
unit’s two suppliers. (In the case of units in row L, we may also suppose that
two units of primary inputs are required, though this is irrelevant for the pro-
duction dynamics, since we assume that the primary inputs are always available
when needed, and that purchases of them have no effect upon the demand for
any of the produced goods.) Finally, we assume that the cost of holding one unit
of inventory is negligible, while there is a significantly positive cost per period
of holding more than one unit. Hence (given that inventories can always be
replenished instantaneously by production) it is optimal for each unit to always
hold in inventory either zero units or one unit of the good that it produces. New
production only occurs when an order cannot be filled out of existing inventory,
and never results in more than one unit remaining in inventory.

The initial state of the economy at the beginning of any period t is described
by specification of the inventory holdings xi,j(t) for each productive unit (i, j).
There are thus 2L

2
possible states in the configuration space X for this economy.

Transitions between states occur in the following manner. Let si,j(t) denote the
number of sales by unit (i, j) in period t, and yi,j(t) the number of units of output
produced by that same unit in the same period. Then inventory dynamics follow
the law of motion

xi,j(t+ 1) = xi,j(t) + yi,j(t)− si,j(t) (1)

Furthermore, because of the considerations just mentioned, optimal production
scheduling implies that output is a function of beginning-of-period inventories
and the number of orders received,

yi,j(t) = y(xi,j(t), si,j(t)) (2)
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where the function y(x, s) is defined in Table 1.

Substitution of (2) into (1) implies that

xi,j(t+ 1) = x′(xi,j(t), si,j(t))

where the function x′(x, s) is also defined in Table 1. In the Table, these func-
tions are defined only for the values x = 0, 1 and s = 0, 1, 2. This is sufficient,
because as long as each unit begins with either zero or one units of inventory
and receives zero, one, or two orders, that unit will produce zero or two units,
will end with zero or one units of inventory, and will order zero or one units
from each of its suppliers, so that each its suppliers (which receives orders from
only two customers) must also receive zero, one, or two orders.

The orders received by each unit with i > 1 are given by

si,j(t) =
1
2

(yi−1,j(t) + yi−1,j−1(t)) (3)

The orders received by the units in the first row, s1,j(t), are specified as exoge-
nous shocks, determined outside the system. Each of these is assumed to be
either zero or one. The fact that a larger number of orders is not possible within
a single period reflects an assumption that a “period” is very short; in particular,
it is a time interval short enough for the discreteness of the units’ order flows to
be significant. Then the vector of exogenous shocks s(t) = (s1,1(t), ..., s1,L(t))
belongs to a shock space S of size 2L. Equations (1) - (3) then completely de-
termine the new state x(t + 1) ∈ X as a function of the initial state x(t) ∈ X
and the vector of exogenous shocks s(t) ∈ S.

The dynamics just specified are of the following character. Each of the
random orders received by a final goods producer (unit with i = 1) initiates
a chain reaction whose length depends upon the initial configuration. If the
unit receiving the order can fill it out of existing inventory, no further orders are
generated. But if it cannot, it produces and thus sends orders to two units in row
i = 2. These firms may or may not then be required to produce, sending orders
to firms in row i = 3. If they do, those orders may or may not trigger further
production and further order flows, and so on. In the case that a final goods
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order triggers production, we will refer to the resulting cascade of production
by the final goods producer and its suppliers all the way back the production
chain as an “avalanche”. We will measure the “size” of such an avalanche by
the total production that occurs by all of the firms involved.

As an example, consider the configuration shown in Figure C (top). Here
black circles indicate units with an initial inventory sij = 1, and white circles
units with initial inventory sij = 0. (Supply relationships are as in Figure A.)
Suppose that an order is received by the final goods producer indicated by the
arrow. As this producer has no inventory, it must produce in order to fill the
order, leaving it with one unit of inventory after the order is filled. It orders
supplies from two units in the row below, neither of which begin with any
inventories. Each of these units also must produce in order to fill the orders,
and each is left with one unit of inventory after the orders are filled. Each of
these units orders supplies from two units in the row below. Thus three units
in row three receive orders. The leftmost begins with one unit of inventory, and
receives only one order, so it does not produce, but ends with zero inventory. The
middle unit begins with zero inventory and receives two orders (one from each
of the units that it supplies), so it produces and also ends with zero inventory.
The rightmost of these units also begins with zero inventory, but receives only
one order; it produces and ends with one unit of inventory. The unit that does
not produce does not order supplies from its suppliers, but each of the other
two units does, and so the process continues.

Figure C (middle) shows the size of the “avalanche” of production that
eventually occurs as a result of the single final good order. The box encloses
the set of productive units that are affected (that receive orders). Within this
box, the grey circles indicate units that produce, while the white circles indicate
units that simply fill an order out of existing inventory (and as a consequence
end with zero inventory). Note that the lower boundary of the affected region
consists entirely of white circles, while all units not on the lower boundary are
grey circles – the avalanche stops if and only if orders can be filled out of existing
inventories. In the case shown, the avalanche is of “size” 16; eight producers
each produce two additional units of output. Figure C (bottom) shows the final
configuration after all orders have been filled.

Given a probability distribution on the shock space S, and independent
drawings of the shock vectors across periods, the dynamics above define a
Markov chain on the configuration space X. We are interested in particular
in the behavior of the following aggregate quantities.

N(t) = Σjs1,j(t)

defines aggregate demand for final goods in period t, while

Y (t) = Σi,jyi,j(t)

defines aggregate production. Note that both of these variables are functions of
(x(t), s(t)). We are interested in whether it is possible for significant fluctuations
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in Y (t) to occur despite an absence of significant exogenous fluctuations in
aggregate final sales N(t).

In the case of interest to us here, we assume that each of the exogenous
random shocks s1,j(t), for j = 1, ..., L, is independent, taking the value zero
with probability 1− p and the value one with probability p, where p is a small
positive number. These are the independent sectoral shocks whose aggregate
effects we wish to analyze. Furthermore, we are interested in systems with a
large number of such independent shocks. Thus we will consider systems in
which the number of sectors L is made very large. In particular, we wish to
consider the limiting behavior as L is made arbitrarily large, with p varying with
the size of the economy, as some power L−γ , with 2/3 < γ < 1. 16 The mean
number of final goods orders per period N(t) is then p(L)L, which grows as
L1−γ . The random variable Ñ(t) = N(t)/L1−γ then has a mean that does not
change with L, and the limiting distribution of Ñ , if it exists, is accordingly a
reasonable indicator of the degree to which there are exogenous aggregate shocks
in the large economy limit. It is easily seen that as L is made arbitrarily large,
the random variable Ñ converges in distribution to a constant (the constant
mean). Thus there exists no aggregate variability in the exogenous flow of final
goods orders in the limit.

We now wish to consider a similar question about the limiting variability
of aggregate production. It can be shown by arguments given in the following
section that the median value of Y (t) grows asymptotically as L3(1−γ). Hence
we consider the limiting behavior of the scaled aggregate production measure
Ỹ (t) = Y (t)/L3(1−γ). 17 In the next section, we argue that Ỹ converges in dis-
tribution as L is made arbitarily large, and furthermore that the distribution is
not a constant. In this sense we argue that aggregate fluctuations in production
continue to occur in the large economy limit, even though aggregate exogenous
shocks cease to exist.

5 The Distribution of Aggregate Production in
the Large Economy Limit

Our study of the statistical properties of this model is simplified by observing
that it is formally isomorphic to a sandpile model exhibiting self-organized criti-
cality, that has been previously analyzed by Dhar and Ramaswamy (1989), who
in turn exploit similarities between this type of model and a model of directed
percolation analyzed by Domany and Kinzel (1984). 18 We first observe that for

16A possible interpretation of the variation of p with L is that as we consider larger systems
we average our aggregate data over progressively shorter “periods”.

17In this case we consider the median rather than the mean, because the appropriately
scaled aggregate production turns out to converge to a distribution with no mean. In the case
of final goods orders, the median also grows asymptotically as L1−γ , but we refer above to
the mean because its scaling properties are so trivial to derive.

18Dhar and Ramaswamy, however, are only concerned with the size distribution of the
avalanches resulting from a single order for a final good. They thus do not consider the
precise issue of interest here.

14



each possible vector of exogenous shocks s ∈ S, there is a well-defined transition
operator Ts : X → X. It is easily verified (i) that if s1 +s2 = s (under modulo-2
arithmetic on each of the elements s1,i), then Ts = Ts1 · Ts2 = Ts2 · Ts1 , and
(ii) that each of the transformations is invertible (with inverse given by T−s,
where the −s again refers to elementwise modulo-2 arithmetic). Thus the set
of transformations {Ts} for s ∈ S forms an Abelian group, with T0 the identity.

One consequence of this structure is that the effects of a shock vector s that
involves orders at N sites are identical to the effects of a succession of N shocks,
each involving an order at one of those sites. (Also, the order in which the
individual final goods orders arrive does not matter.) Thus we may write

Y (t) =
N(t)∑
j=1

Yj(t)

where Yj(t) represents the size of the avalanche caused by the order at the jth
site at which an order is received in period t. Then our problem reduces to a
study of the distribution of the sizes of the individual avalanches {Yj(t)}.

Another immediate consequence of this structure is that the uniform dis-
tribution on the configuration space X is an invariant distribution for each of
the transformations Ts, and hence is an invariant distribution for the Markov
chain on X defined by our model. This allows us to calculate an unconditional
probability distribution for Yj . (Because of the symmetry of the model, this
distribution is the same for all j, and is independent of the site at which the jth
order is received.) For example, the unconditional probability that a final goods
order triggers production by the unit receiving the order is exactly 1/2. Fur-
thermore, conditional upon such production occurring (and orders being sent
to two units in row 2), the probability that production is triggered at the two
units in row 2 that supply the final goods producer is 1/2 in each case (and
independent across the two producers). Thus the probability that an avalanche
is of size zero is exactly 1/2 (the probability that x1,i = 1 at the site where
the initial order is received). The probability that an avalanche is of size two
(only one unit produces) is exactly 1/8 (the probability that x1,i = 0, x2,i = 1,
and x2,i+1 = 1). The rest of the probability distribution can be calculated in a
similar manner.

Let Rj denote the last row affected by avalanche j, that is, the largest i such
that yi,k = 2 for some k. (We set Rj = 0 if no production occurs.) Then Dhar
and Ramaswamy show that for all r < L,

P (Rj = r) = 2−2r−1(2r)!/[r!(r + 1)!]. (4)

Note that P (Rj = r) is independent of L, for all L large enough, so that there is
a well-defined probability of reaching each row in the limiting case of an infinite
lattice. In this limiting case, P (Rj = r) declines as r−3/2 for large r. Similarly,
P (Yj = y) is independent of L for all L large enough (since Rj ≥ r necessarily
implies Yj ≥ 2r.) Thus there is also a well-defined size distribution of avalanches
in the case of an infinite lattice, and Dhar and Ramaswamy show that

P (Yj > y) ∼ y−1/3 (5)
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for large y. We will let πL denote the unconditional distribution for Yj in the
case of a lattice of size L, and π∞ the distribution in the limit of an infinite
lattice. Numerical calculations of these distributions are plotted in Figure D.
19 We plot the logarithm of the frequency against the logarithm of the size of
the avalanche, so that property (5) is evident in the asymptotic linearity of the
plot of π∞. 20

This distribution π∞ gives the probability of avalanches of various sizes,
starting from an initial state randomly drawn using the uniform distribution.
We next consider the long run frequency distribution of avalanche sizes when a
system is observed over time. Unfortunately, the uniform distribution is not the
only invariant distribution, and the system is not ergodic. The system posesses
2L−1 invariant classes. Each invariant class consists of all configurations such
that

∑L
j=1 xij = ai modulo 2, for each i > 1, for some sequence of constants

ai ∈ {0, 1}. For each of these classes, the uniform distribution over the elements
of the class is an extremal invariant distribution. Given any initial configuration,
the long run frequency distribution of configurations visited is always one of
these extremal distributions. However, the distribution of possible avalanche
sizes, conditional upon the system being in a particular invariant class (specified
by a sequence {ai}) is independent of the class, and is the one derived above.
Equation (4) is equally true when we condition upon the invariant class, for the
probability of finding a zero or one at any site in the path of the avalanche (above
row L) is the same, regardless of the value of ai for that row. Similarly, P (Yj =
y) for any y small enough compared to L is independent of the invariant class.
Hence the limiting distribution of individual avalanche sizes, even conditioning
upon the sequence {ai}, is still the distribution π∞ defined above.

It is obvious from (5) that π∞ is a distribution with a very fat upper tail — in
fact, it has no mean. Large avalanches are much more likely in this model than
in the case of a Gaussian law (that would result if the size of an avalanche were
the sum of a large number of independent, bounded random shocks). 21 It is
because the long-run frequency distribution of avalanche sizes is π∞ regardless
of the initial state that we say that the system “self-organizes” to a state in
which large avalanches are common. 22

We now turn to a consideration of the unconditional distribution of the
scaled aggregate production measure Ỹ . Unfortunately, while the distribution
πL represents the unconditional distribution of Y1, it is not the right conditional

19See the next section for discussion of the numerical calculations.
20Note that (5) implies that the frequency should decline as y−4/3, which is the slope

observed in the plot.
21The power-law relation between the size of the event and its frequency displayed in (5)

has been much discussed as an indication of self-organized criticality (e.g., Bak, Tang, and
Wiesenfeld (1988)).

22In the sandpile model discussed in section 2, a sandpile that is relatively flat corresponds
to an initial configuration in which most of the xi,j are ones. In such a case almost all
avalanches are small. But as indicated before, such a state will not last as grains of sand are
added at random; formally this is proved by showing that states of this kind are given little
probability weight in the long-run frequency distribution on X, regardless of the invariant
class to which the initial configuration belongs.

16



distribution for Y2 given Y1, for the sizes of successive avalanches are not inde-
pendent random variables. In particular, a large avalanche starting at one site
makes it harder for a large avalanche to occur starting at a nearby site. Recall
the region affected by the avalanche in Figure C (middle). One observes that in
the final configuration, every unit on the upper boundary of the affected region
(those units belonging to the region but with a customer that does not) that
is not also part of the lower boundary (those units belonging to the region but
with a supplier that does not) has an inventory of one unit. Thus the upper
boundary of the region affected by one avalanche becomes a wall of units holding
inventory, so that a subsequent avalanche beginning outside the region is not
able to penetrate it (as these units can each fill an order with out passing on
any orders to their own suppliers). The region affected by the second avalanche
can overlap with the first region only at boundary units of the first region. Thus
if the first affected region is large, and the second avalanche starts nearby, it is
hard for the second avalanche to affect a large region.

This dependence complicates our analysis. However, we argue that its effects
become negligible in the limit of a large system, if the probability p(L) falls with
L at a fast enough rate. Our argument proceeds in several steps.

(1) First we consider the probability distribution F̄N∞ of a variable WN =∑N
j=1(Yj/N3), for given N , if the Yj are independent drawings from π∞, the

unconditional distribution for the size of individual avalanches in an infinite
lattice. Property (5) and well-known results on the domain of attraction of
stable laws (see,e.g., Gnedenko and Kolmogorov (1968), p. 175, Theorem 2)
imply that as N →∞, this distribution converges to a certain distribution that
we will denote F∞∞ , a Pareto-Levy stable law with exponent α = 1/3. The
logarithm of the characteristic function of this distribution is given by

g(t) = iδt− c|t|1/3
[
1− i(t/|t|)tg(π/6)] (6)

where c =
∫∞

0
[(1 − e−x)/x4/3]dx cos(π/6). The probability density for F∞∞

is plotted in Figure E(iv) (solid line). 23 Here we again plot the logarithm
of the density against the logarithm of y; the asymptotic linearity of this plot
again indicates that the probability density falls as y−4/3 for large values of
y = limN→∞WN . Thus the size distribution of this aggregate inherits the
property (5) of the size distribution of individual avalanches, and again, large
aggregate fluctuations are much more frequent than would occur in the case of
a normal law.

(2) We next consider the probability distribution FL∞ of the variable ZL =∑NL
j=1(Yj/N3

L), where NL is a random variable, and again the {Yj} are indepen-
dent drawings from π∞. Here NL is the random value of N(t), the number of
total final goods orders, if the number of distinct goods is L and the probability
of each order is p(L) = kL−γ for some constant k > 0. We assume that NL is
independent of each of the {Yj}. We now show that as L→∞, fixing k and γ,
FL∞ → F∞∞ as well (where F∞∞ is again the distribution defined by (6)).

23The numerical method used to compute it is discussed further in the next section.
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Fix x > 0 a point of continuity of F∞∞ . For any ε > 0, let L be large enough
so that

P{(k/2)L1−γ < NL} > 1− ε/3. (7)

Note that if γ > 0, E(NL) ∼ L1−γ , and V ar(NL) ∼ L1−γ for large L. Then
Chebyshev’s inequality implies that if 0 < γ < 1, (7) must hold for all L large
enough. It follows that

|F∞∞ (x)− FL∞(x)| = |F∞∞ (x)− P{WNL ≤ x}|

= |F∞∞ (x)− P{WNL ≤ x and (k/2)L1−γ < NL}

−P{WNL ≤ x and (k/2)L1−γ ≥ NL}|

≤ |F∞∞ (x)− P{WNL ≤ x
∣∣(k/2)L1−γ < NL} · P{(k/2)L1−γ < NL}|+ ε/3 (8)

where P (·
∣∣·) denotes the conditional probability.

Furthermore, since F̄N∞ → F∞∞ as N →∞, we know that if L is large enough,
and N > (k/2)L1−γ ,

|F∞∞ (x)− P{WN ≤ x}| < ε/3.

Therefore
|F∞∞ (x)− P{WNL ≤ x

∣∣(k/2)L1−γ < NL}| < ε/3.

Then (7) together with 0 ≤ F∞∞ (x) ≤ 1 imply that

|F (x)− P{WNL ≤ x
∣∣(k/2)L1−γ < NL} · P{(k/2)L1−γ < NL}| < 2ε/3.

This together with (8) then implies that

|F∞∞ (x)− FL∞(x)| < ε.

Thus FL∞(x)→ F∞∞ (x) as L→∞, for x any point of continuity of F∞∞ (x).
(3) We next consider the probability distribution FLL of the variable VL =∑NL
j=1(Yj,L/N3

L), where now the {Yj,L} are independent drawings from πL, and
NL is an independent random variable with the same distribution as above.
We present a heuristic argument that FLL → F∞∞ (x) as L → ∞. Note that
VL(ω) = ZL(ω) for each state ω in which each of the NL avalanches in the
infinite lattice happens to die out before row L of the lattice is reached. 24

The probability of this occurring is ψL =
∑∞
n=1 P (NL = n) · (1 − φL)n, where

φL = P (Rj ≥ L) for an individual avalanche j. For large L, this quantity is
approximately (1− φL)kL

1−γ
. Recall furthermore that by (4),

φL ∼ L−1/2

24Here a typical element ω of the underlying probability space represents a drawing of
NL and of NL drawings of configurations for the infinite lattice. Even though the uniform
invariant distribution for configuration space X is improper in the case of an infinite lattice, the
probabilities of all cylinders of the form “NL = 2, with the first configuration having x1,1 = 1,
and the second configuration having x1,1 = 0, x2,1 = 1, and x2,2 = 1” are well-defined.
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for large L, so that
−log(1− φL) ∼ L−1/2

−log(ψL) ∼ L1/2−γ

which latter quantity converges to zero as L → ∞, provided that γ > 1/2.
Hence if γ > 1/2, ψL → 1 as L→∞. But then for any x > 0,

|FL∞(x)− FLL (x)| ≤ 1− ψL

so that |FL∞(x)−FLL (x)| → 0 as L→∞. This implies that |F∞∞ (x)−FLL (x)| → 0
as L→∞ as well.

(4) We next consider the unconditional probability distribution GL of ȲL =
YL/N

3
L, where YL and NL are the aggregates for our model defined in the previ-

ous section (aggregate production and aggregate final goods sales, respectively),
in the case of a lattice of size L. Note that ȲL is the same random variable as
VL, except that in our model the sizes of successive avalanches are not indepen-
dently distributed (as explained above). We now provide a heuristic argument
that the dependence should become negligible for large L, so that GL → F∞∞ as
L→∞, just as in the case of FLL .

We consider the probability of an initial configuration, and a vector of final
goods sales, such that, however many avalanches occur, none of the affected
regions overlap, and furthermore the affected regions for any two neighboring
avalanches are separated by at least one site in each row. Conditional upon
this event E, the size distributions of all of the avalanches are independent,and
are furthermore the same regardless of which invariant class to which the initial
configuration belongs. (If the affected regions do not jointly exhaust any row,
then the invariant distribution of possible states at sites in the paths of the
avalanches is the uniform distribution, independent of the invariant class. And
if the affected regions do not overlap, the initial states at sites in the path of
one avalanche are independent of the initial states in the path of any other
avalanche.) Hence the distribution of ȲL is identical to that of VL. Thus it
suffices to show that the probability of event E converges to 1 as L→∞.

In a lattice of size L, consider an avalanche starting at site (1, j), and suppose
that the next site to the right at which an avalanche starts is (1, j + q + 1), for
some q > 0. Let v(i) denote the right boundary of the affected region of the first
avalanche in row i (defined for all i ≤ R1, where R1 is the last row reached by
that avalanche), and let u(i) denote analogously the left boundary of the affected
region of the second avalanche. We wish to bound below the probability that
v(i) + 1 ≤ u(i), for all i such that both are defined. Note that conditional upon
the fact that neither of the avalanches terminates at or before row i, and that
v(i)+1 ≤ u(i), v(i+1) = v(i) with probability 1/2 and equals v(i)+1 otherwise,
and u is an independent random walk with drift, of the same kind.

The probability that v(i) + 1 ≤ u(i) for all relevant i is in turn bounded
below by the probability that

v(i) < j + (
i+ q − 1

2
) (9a)
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u(i) > j + (
i+ q + 1

2
) (9b)

both hold for all relevant i. In order to obtain an approximation of this prob-
ability, we consider the limiting case of a continuous lattice and a Brownian
motion with drift. The probability that a Brownian motion with drift 1/2 per
row (where “row” is now a continuous time-like coordinate) and instantaneous
variance 1/4 per row never reaches a distance q/2 to the right of its expected
path, over the entire interval [0, L], is just the probability that ML, the max-
imum over [0, L] of a Brownian motion with this variance but no drift, is less
than q/2. But it is well-known that ML is distributed as |BL|, the absolute
value of the latter Brownian motion at row L. In turn,

P{|BL| ≥ q/2} ≤ L/q2,

by Chebyshev’s inequality (since the variance of BL is L/4). Hence the prob-
ability that (9a) holds for all i ≤ L is at least 1 − L/q2. Thus the probability
that both (9a) and (9b) hold is at least (1−L/q2)2, and likewise the probability
that the two affected regions are always separated by at least one site.

In the case of N avalanches, each starting at a site a distance q + 1 from
the previous one, one similarly shows that the probability that none of the N
affected regions adjoin is at least (1− L/q2)2N . Now if p(L) = kL−γ , the mean
distance between sites at which final goods orders are received in a given period
is q + 1 = k−1Lγ , and the mean number of such sites is N = kL1−γ . The
probability that none of the regions adjoin is then bounded below by(

1− k2L1−2γ
)2kL1−γ

If 1/2 < γ < 1, the logarithm of this probability is of the order of −L2−3γ for
large L, so that if 2/3 < γ < 1, the probability of event E converges to one as
L → ∞. Hence we expect GL and FLL to approach the same limit as L → ∞,
which is to say that GL → F∞∞ .

(5) Finally, we consider the unconditional probability distribution HL of
ỸL/k

3 = YL/k
3L3(1−γ), where YL is the same aggregate as above. Now ỸL/k

3 =
ȲL · (N3

L/k
3L3(1−γ)) = ȲL · (Ñ3

L/k
3), and Ñ3

L/k
3 → 1 (a constant) with proba-

bility one as L→∞. Then by Slutsky’s theorem, HL → F∞∞ , the same limit as
GL, as L→∞.

Thus we can establish that in the large economy limit, the distribution of
values taken by the scaled aggregate output Ỹ converges to a non-degenerate
probability distribution, although the scaled level of aggregate final goods sales
Ñ converges to a constant. 25 Furthermore, the limiting distribution is one
that allows levels of aggregate output that are large compared to the median
to occur with great frequency — the distribution has no mean, and the upper
tail follows a power law of the kind discussed above in connection with the size
distribution of individual avalanches.

25This result also establishes that the median of YL, when scaled by L3(1−γ), approaches a
constant, namely k3med(F∞∞ ), as asserted at the end of the previous section.
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6 Simulations of a Finite Economy

In this section we present the results of numerical simulations of the model
described in section 4. These results help to give some idea of how accurate
the conclusions of the previous section regarding behavior in the large economy
limit are as a description of what happens in a finite economy.

First we consider the unconditional probability distribution for the size of
an individual avalanche. Calculation of this does not require simulation of the
model of section 4. It suffices to simulate the evolution of the left and right
boundaries of the affected region, the laws of motion of which are described in
the previous section. An avalanche terminates when the right boundary crosses
the left boundary.

Figure D shows our results for the case of avalanches truncated at row L
= 1600, and for avalanches in an infinite lattice. As our previous theoretical
argument indicated, the distributions π1600 and π∞ coincide for avalanches up
to a certain size; here we see that they are similar for avalanche sizes up to
around 15,000. On the other hand, the frequency of avalanches of size greater
than 50,000 falls off much faster in the case of the finite lattice than in the
case of the infinite lattice (where frequency declines with size only at the rate
indicated by (5)). Avalanches of size 30,000 or so are actually more frequent
in the system of size 1600 than in the infinite system; this is because many
avalanches that would continue if not truncated at row 1600 are of roughly this
size.

Figure E(i) (solid line) plots the density function for the distribution H1600,
the distribution of the scaled aggregate output measure Ỹ /k3, for an economy
with L = 1600 and p = .005. Over a certain range (values between 0.2 and
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20) the logarithm of the density varies roughly linearly with aggregate output.
However, this is certainly not true for larger output fluctuations, whereas our
theory (for the large economy limit) predicts asymptotic linearity, for the largest
values. The remaining distributions plotted in Figure E are intended to give
insight into the exact ways in which the large economy limit fails to be a good
approximation for this model.

Figure E(i) compares H1600 with G1600, the distribution of Y/N3 for our
model. We know that for large L these distributions are the same, but even for
L = 1600 we see that they are quite different at the extremes. This is because
the binomial distribution for the number of final goods sales N is not yet too
well approximated by a constant; the mean is 8, but the standard deviation
is nearly 3, which means that variations that are large relative to the mean
occur relatively frequently. This problem eventually disappears, however, as L
is increased, if p varies with L in the way assumed above. 26

Figure E(ii) compares G1600 with F 1600
1600 , the distribution of Y/N3 if the

sizes of successive avalanches are independent draws from the unconditional
distribution. Note that these distributions are indistinguishable, at the level
of resolution allowed by our numerical work. Thus the dependence that exists
in our model between the sizes of successive avalanches is not quantitatively
significant, except perhaps for avalanches so large that they do not occur often
in a data set of the size used in preparing the Figure. 27

Figure E(iii) compares F 1600
1600 with F 1600

∞ , the distribution of Y/N3 if the
avalanches are not only independent but occur in an infinite lattice (though
the distribution of the number of avalanches is the same as in our model with
L = 1600 and p = .005). Here we see that truncating the avalanches at row
1600 has a similar effect on the distribution of this aggregate measure as it
does on the size distribution of individual avalanches (shown in Figure D). The
distributions coincide for small values of y (up to about 20), the distribution for
the finite lattice makes values of a certain size (about 100) more frequent than
it would be in the case of an infinite lattice, and beyond that scale the density
falls off more rapidly with size in the case of the finite lattice. Notice also that
the distribution for avalanches in an infinite lattice exhibits a roughly linear
graph (the power-law behavior discussed above) over a large range of values of
y from about .05 to the highest values observed (over 10 million). (Deviations
from exact linearity in our plot are probably mainly due to not having a large
enough sample to estimate the upper tail very accurately.)

Finally, Figure E(iv) compares F 1600
∞ with F∞∞ , the theoretical large-economy

limit. (Here we approximate the limit not by making L large and p small, but
by computing F̄N∞ for large N . 28) Here there is little visible difference between

26The problem with our present example is not so much that L is small as that p is quite
small (our “period” is short). We have chosen a small p in order to make interference between
avalanches at different locations within a single “period” infrequent, as the asymptotic absence
of such interference plays a crucial role in our argument in the previous section.

27We simulated the model for 5000 periods in the case of G1600, and simulated 60,000
independent avalanches in the case of F 1600

1600 .
28For the Figure, we use N = 20, since variation in N already has little effect on the
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F 1600
∞ and the limiting distribution. To sum up, the observed differences between
H1600 and the Pareto-Levy distribution predicted for the large-economy limit
are almost entirely due to (i) the fact that in our example, aggregate final goods
sales are still not at all constant, and (ii) the fact that individual avalanches
truncated at row 1600 have a different distribution (at the upper tail) than do
avalanches in an infinite lattice.

computed distribution.
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