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In a number of contexts, it has proven useful for economists to model agents as

choosing randomly among a discrete set of possible choices, even conditional upon

the values of the “fundamental” determinants of choice, such as characteristics of the

goods that may be chosen. In macroeconomics, it is common in empirical work on

models with fixed costs of adjustment (or other non-convexities) — in contexts such

as adjustment of prices, adjustment of a firm’s capital stock, or adjustment of the size

of its workforce — to assume an “adjustment hazard” (i.e., a function giving the prob-

ability of adjustment) that varies continuously with the (real-valued) fundamentals,

rather than assuming that adjustment occurs if and only if the fundamentals cross a

certain threshold as in “Ss” models (e.g., Caballero and Engel, 1993a, 1993b, 1999).

A similar type of randomization is commonly assumed in econometric studies of dis-

crete purchases by households (e.g., McFadden, 1981, 2001; Train, 2003); discrete

choice models of this kind are widely used in areas including energy, transportation,

environmental studies, health, labor, and marketing.

Often, the assumption of randomization is taken to be merely a proxy for un-

observed heterogeneity in either the agents or other aspects of the choice situation;

it is supposed that the choice is fully determined by fundamentals, but that some

of these are not observed (although one may hypothesize a probability distribution

for them). In the discrete-choice literature on individual behavior, it is common to

use specifications that can be interpreted as consistent with maximization of a utility

function with a random term (McFadden, 1981). In the case of macroeconomic mod-

els of adjustment, the adjustment hazard function is sometimes introduced without

theoretical foundations (as in Caballero and Engel, 1993a, 1993b); but it is sometimes

derived from an assumption that the fixed cost of adjusting is drawn randomly each

period from a given probability distribution (e.g., Caballero and Engel, 1999; Dotsey,

King and Wolman, 1999).

I believe, however, that there is good reason to prefer an alternative interpretation.

First of all, allowance for an arbitrary hazard function is a theory with very weak

predictions, which in practice are likely to be made sharper by assuming additional

structure purely for analytical convenience, which may well be incorrect. Even when

one assumes optimization given a random draw of the fixed cost of adjustment, this

is a weak theory in the absence of furhter (unmotivated) assumptions, such as the

ubiquitous (but rather implausible) assumption that an independent draw of the

fixed cost is made each time. Moreover, experiments suggest that individual choice

really is random (e.g., Loomes and Sugden, 1995). Indeed, the recent literature on

1



experimental choice behavior is consistent with a much older literature in the branch

of experimental psychology known as “psychophysics,” which showed that subjects

could not reliably make the same judgment about the relative strength of two stimuli

when facing the same choice on repeated occasions (e.g., Fechner, 1859). These

experimental data are often explained by models which assume a random element in

the perception by the subject of an unchanging stimulus (e.g., Thurstone, 1927); but

the randomness is clearly a feature of the subject’s nervous system rather than of

preferences.

Under the alternative interpretation to be explored here, random choice results

precisely from the decisionmaker’s difficulty in discriminating among different choice

situations, a human cognitive limitation extensively documented by the psychophysi-

cists. (Stochastic perception is already a familiar model of random choice in the

experimental psychology literature; see, e.g., Nevin, 1981.) Moreover, rather than

assuming an arbitrary random element in agents’ perceptions of the choice situation

— an arbitrariness that would be subject to the same criticism raised above to ran-

dom adjustment costs — I shall follow Sims (1998, 2003, 2006) in using information

theory to motivate a very specific theory of the nature of the imperfect ability to

discriminate among alternative choice situations. This yields not only an extremely

parsimonious theory — only one additional free parameter is introduced, relative

to the standard “Ss” model (infinite precision of perceptions, constant preferences,

constant fixed cost) of discrete choice — but it also allows one to derive random-

ized choice (conditional on fundamentals) as a conclusion of the theory rather than

something that is directly assumed (by positing a certain degree of randomness of

perceptions).

Under Sims’ hypothesis of “rational inattention,” a decisionmaker is assumed to

have imperfect awareness of the state of the world when making decisions, but the

partial information possessed is assumed to correspond to that signal (or set of signals)

that would be of most value to her (given the decision that she faces), among all

possible signals that possess no greater information content, in the quantitative sense

first defined by Shannon (1948) and used extensively by communications engineers.

The idea is that the fundamental bottleneck is the limited attention (or information-

processing capacity) of the manager herself, not that some aspects of the state of the

world are hidden (or costly to learn about) even if one were to take the trouble to pay

close attention to them. This is a highly parsimonious theory, as it introduces only a
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single new parameter, the assumed limit on information flow to the decisionmaker (in

“bits” per time unit), or alternatively, the cost per unit of information (the shadow

value of use of the manager’s attention for other tasks).1

Here I discuss the implications of this hypothesis for discrete choice problems.

(The examples studied by Sims in the papers cited instead involve choice of a con-

tinuous variable, such as the level of consumption each period. Moreover, a discrete

choice problem necessarily requires one to depart from the linear-quadratic-Gaussian

framework used by Sims, 1998, 2003.) An important basic result (explained in the

next section) is that the optimal information structure (given a cost of information

flow) necessarily results in random choice. Moreover, under fairly simple assumptions,

the precise model of random choice implied is a logit specification often assumed in

econometric models of household choice.

1 Rational Inattention and the Optimal Adjust-

ment Hazard

In order to show how “rational inattention” of the sort hypothesized by Sims (1998,

2003, 2006) gives rise to a continuous “adjustment hazard” of the kind postulated by

Caballero and Engel (1993a, 1993b), I here consider a simple one-time choice between

two alternatives. A leading example of the kind of problem that I wish to study is

a firm’s choice of the times at which to review its pricing policy. (This application

is treated in detail in Woodford, 2008.) In the discussion here, I shall describe the

problem as one of choosing whether or not to reconsider the firm’s existing price,

but the same formalism could be applied to any of many different discrete choice

problems.

1.1 Formulation of the Problem

Let the “normalized price” of a firm i be defined as q(i) ≡ log(p(i)/PY ), where p(i)

is the price charged by firm i for its product, P is an aggregate price index, and Y

is an index of aggregate output (or aggregate real expenditure), and suppose that

1Other applications of this approach include Mackowiak and Wiederholt (2007), Paciello (2007),
and Tutino (2007). Other recent models of endogenous choice of how well informed decisionmakers
should be include Moscarini (2004), Bacchetta and Van Wincoop (2005), and Reis (2006a, 2006b).
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the expected payoff2 to the firm of charging normalized price q is given by a function

V (q), which achieves its maximum value at the optimal normalized price

q∗ ≡ arg max
q

V (q).

I shall assume that V (q) is a smooth, strictly quasi-concave function. By strict

quasi-concavity, I mean that not only are the sets {q|V (q) ≥ v} convex for all v,

but in addition the sets {q|V (q) = v} are of (Lebesgue) measure zero. Strict quasi-

concavity implies that there exists a smooth, monotonic transformation q = φ(q̂)

such that the function V̂ (q̂) ≡ V (φ(q̂)) is not only a concave function, but a strictly

concave function of q̂. In this case, under the further assumption that V (q) achieves

a maximum, the maximum q∗ must be unique. Moreover, q∗ is the unique point at

which V ′(q∗) = 0; and one must have V ′(q) > 0 for all q < q∗, while V ′(q) < 0 for all

q > q∗.

We can then define a “price gap” x(i) ≡ q(i) − q∗, as in Caballero and Engel,

indicating the signed discrepancy between a firm’s actual price and the price that

it would be optimal for it to charge.3 Under full information and in the absence of

any cost of changing its price, a firm should choose to set q(i) = q∗. Let us suppose,

though, that the firm must pay a fixed cost κ > 0 in order to conduct a review of

its pricing policy. I shall suppose, as in canonical menu-cost models, that a firm

that conducts such a review learns the precise value of the current optimal price, and

therefore adjusts its price so that q(i) = q∗. A firm that chooses not to review its

existing policy instead continues to charge the price that it chose on the occasion of

its last review of its pricing policy. The loss from failing to review the policy (or

alternatively, the gain from reviewing it, net of the fixed cost) is then given by

L(x) ≡ V (q∗)− V (q∗ + x)− κ, (1.1)

2I need not be specific at this stage about the nature of this payoff. In the eventual dynamic
problem considered below, it includes not only profits in the current period (when the price p(i) is
charged), but also the implications for expected discounted profits in later periods of having chosen
a price p(i) in the current period.

3It might appear simpler to directly define the normalized price as the price relative to the optimal
price, rather than relative to aggregate nominal expenditure, so that the optimal normalized price
would be zero, by definition. But the optimal value q∗ is something that we need to determine,
rather than something that we know at the time of introducing our notation. (Eventually, the
function V (q) must be endogenously determined, as discussed in section 2 below.)
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as a function of the price gap x that exists prior to the review.

If V (q) is a smooth, strictly quasi-concave function, then L(x) is a smooth, strictly

quasi-convex function, with a unique minimum at x = 0. Then in the case of full

information, the optimal price-review policy is to review the price if and only if the

value of x prior to the review is in the range such that L(x) ≥ 0.4 The values of

x such that a price review occurs will consist of all x outside a certain interval, the

“zone of inaction,” which necessarily includes a neighborhood of the point x = 0. The

boundaries of this interval (one negative and one positive, in the case that the interval

is bounded) constitute the two “Ss triggers” of an “Ss model” of price adjustment.

I wish now to consider instead the case in which the firm does not know the value

of x prior to conducting the review of its policy. I shall suppose that the firm does

know its existing price, so that it is possible for it to continue to charge that price in

the absence of a review; but it does not know the current value of aggregate nominal

expenditure PY, and so does not know its normalized price, or the gap between its

existing price and the currently optimal price. I shall furthermore allow the firm to

have partial information about the current value of x prior to conducting a review;

this is what I wish to motivate as optimal subject to limits on the attention that the

firm can afford to pay to market conditions between the occasions when the fixed

cost κ is paid for a full review. It is on the basis of this partial information that the

decision whether to conduct a review must be made.

Following Sims, I shall suppose that absolutely any information about current

(or past) market conditions can be available to the firm, as long as the quantity of

information obtained by the firm outside of a full review is within a certain finite

limit, representing the scarcity of attention, or information-processing capacity, that

is deployed for this purpose. The quantity of information obtained by the firm in

a given period is defined as in the information theory of Claude Shannon (1948),

used extensively by communications engineers. In this theory, the quantity of in-

formation contained in a given signal is measured by the reduction in entropy of

the decisionmaker’s posterior over the state space, relative to the prior distribution.

Let us suppose that we are interested simply in information about the current value

4The way in which we break ties in the case that L(x) = 0 exactly is arbitrary; here I suppose
that in the case of indifference the firm reviews its price. In the equilibrium eventually characterized
below for the full-information case, values of x for which L(x) = 0 exactly occur with probability
zero, so this arbitrary choice is of no consequence.
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of the unknown (random) state x, and that the firm’s prior is given by a density

function f(x) defined on the real line.5 Let f̂(x|s) instead be the firm’s posterior,

conditional upon observing a particular signal s. The entropy associated with a given

density function (a measure of the degree of uncertainty with a number of attractive

properties) is equal to6

−
∫

f(x) log f(x)dx,

and as a consequence the entropy reduction when signal s is received is given by

I(s) ≡
∫

f̂(x|s) log f̂(x|s)dx−
∫

f(x) log f(x)dx.

The average information revealed by this kind of signal is therefore

I ≡ EsI(s) (1.2)

where the expected value is taken over the set of possible signals that were possible

ex ante, using the prior probabilities of that each of these signals would be observed.7

It is this total quantity I that determines the bandwidth (in the case of radio signals,

for example), or the channel capacity more generally (an engineering limit of any

communication system), that must be allocated to the transmission of this signal

if the transmission of a signal with a given average information content is to be

possible.8 Sims correspondingly proposes that the limited attention of decisionmakers

5In section 1.2, we consider what this prior should be, if the firm understands the process that
generates the value of x, but has not yet obtained any information about current conditions. For
now, the prior is arbitrarily specified as some pre-existing state of knowledge that does not precisely
identify the state x.

6In information theory, it is conventional to define entropy using logarithms with a base of two,
so that the quantity I defined in (1.2) measures information in “bits”, or binary digits. (One bit is
the amount of information that can be transmitted by the answer to one optimally chosen yes/no
question, or by revealing whether a single binary digit is 0 or 1.) I shall instead interpret the
logarithm in this and subsequent formulas as a natural logarithm, to allow the elimination of a
constant in various expressions. This is an equivalent measure of information, but with a different
size of unit: one unit of information under the measure used here (sometimes called a “nat”) is
equivalent to 1.44 bits of information.

7The prior over s is the one implied by the decisionmaker’s prior over possible values of x, together
with the known statistical relationship between the state x and the signal s that will be received.

8Shannon’s theorems pertain to the relation between the properties of a given communication
channel and the average rate at which information can be transmitted over time using that channel,
not the amount of information that will be contained in the signal that is sent over any given short
time interval.
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be modeled by assuming a constraint on the possible size of the average information

flow I.

I shall suppose, then, that the firm arranges to observe a signal s before deciding

whether to pay the cost κ and conduct a review of its pricing policy. The theory

of rational inattention posits that both the design of this signal (the set of possible

values of s, and the probability that each will be observed conditional upon any given

state x) and the decision about whether to conduct a price review conditional upon

the signal observed will be optimal, in the sense of maximizing

L̄ ≡ E[δ(s)L(x)]− θI, (1.3)

where δ(s) is a (possibly random) function of s indicating whether a price review is

undertaken (δ = 1 when a price review occurs, and δ = 0 otherwise); the expectation

operator integrates over possible states x, possible signals s, and possible price-review

decisions, under the firm’s prior; and θ > 0 is a cost per unit of information of being

more informed when making the price-review decision. (This design problem is solved

from an ex ante perspective: one must decide how to allocate one’s attention, which

determines what kind of signal one will observe under various circumstances, before

learning anything about the current state.)

I have here written the problem as if a firm can allocate an arbitrary amount of

attention to tracking market conditions between full price reviews, and hence have

an estimate of x of arbitrary precision prior to its decision about whether to conduct

the review, if it is willing to pay for this superior information. One might alterna-

tively consider the problem of choosing a partial information structure to maximize

E[δ(s)L(x)] subject to an upper bound on I. This will lead to exactly the same one-

parameter family of informationally-efficient policies, indexed by the value of I rather

than by the value of θ. (In the problem with an upper bound on the information

used, there will be a unique value of θ associated with each informationally-efficient

policy, corresponding to the Lagrange multiplier for the constraint on the value of I;

there will be an inverse one-to-one relationship between the value of θ and the value

of I.) I prefer to consider the version of the problem in which θ rather than I is given

as part of the specification of the environment. This is because decisionmakers have

much more attention to allocate than the attention allocated to any one task, and

could certainly allocate more attention to aspects of market conditions relevant to the

scheduling of reviews of pricing policy, were this of sufficient importance; it makes
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more sense to suppose that there is a given shadow price of additional attention,

determined by the opportunity cost of reducing the attention paid to other matters,

rather than a fixed bound on the attention that can be paid to the problem considered

here, even if there is a global bound on the information-processing capacity of the

decisionmaker.

1.2 Characterization of the Solution

I turn now to the solution of this problem, taking as given the prior f(x), the loss

function L(x), and the information cost θ > 0. A first observation is that an efficient

signal will supply no information other than whether the firm should review its pricing

policy.

Lemma 1 Consider any signalling mechanism, described by a set of possible signals

S and conditional probabilities π(s|x) for each of the possible signals s ∈ S in each of

the possible states x in the support of the prior f , and any decision rule, indicating for

each s ∈ S the probability p(s) with which a review occurs when signal s is observed.

Let L̄ be the value of the objective (1.3) implied by this policy on the part of the

firm. Consider as well the alternative policy, under which the set of possible signals

is {0, 1}, the conditional probability of receiving the signal 1 is

π(1|x) =

∫

s∈S

p(s)π(s|x)ds

for each state x in the support of f , and the decision rule is to conduct a review with

probability one if and only if the signal 1 is observed; and let L̄∗ be the value of (1.3)

implied by this alternative policy. Then L̄∗ ≥ L̄.

Moreover, the inequality is strict, except if the first policy is one under which

either (i) π(s|x) is independent of x (almost surely), so that the signals convey no

information about the state x; or (ii) p(s) is equal to either zero or one for all signals

that occur with positive probability, and the conditional probabilities are of the form

π(s|x) = π(s|p(s)) · π(p(s)|x),

where the conditional probability π(s|p(s)) of a given signal s being received, given that

the signal will be one of those for which p(s) takes a certain value, is independent of x
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(almost surely). That is, either the original signals are completely uninformative; or

the original decision rule is deterministic (so that the signal includes a definite rec-

ommendation as to whether a price review should be undertaken) and any additional

information contained in the signal, besides the implied recommendation regarding the

price-review decision, is completely uninformative.

A proof is given in Appendix A. Note that this result implies that we may assume,

without loss of generality, that an optimal policy involves only two possible signals,

{0, 1}, and a decision rule under which a review is scheduled if and only if the signal

1 is received. That is, the only signal received is an indication whether it is time to

review the firm’s existing price or not. (If the firm arranges to receive any more infor-

mation than this, it is wasting its scarce information-processing capacity.) A policy

of this form is completely described by specifying the hazard function Λ(x) ≡ π(1|x),

indicating the probability that a price review occurs, in the case of any underlying

state x in the support of f .

It follows from Lemma 1 that any randomization that is desired in the price-review

decision should be achieved by arranging for the signal about market conditions to

be random, rather than through any randomization by the firm after receiving the

signal. This does not, however, imply in itself that the signal that determines the

timing of price reviews should be random, as in the Calvo model (or the “generalized

Ss model” of Caballero and Engel). But in fact one can show that it is optimal for

the signal to be random, under extremely weak conditions.

Let us consider the problem of choosing a measurable function Λ(x), taking values

on the interval [0, 1], so as to maximize (1.3). One must first be able to evaluate (1.3)

in the case of a given hazard function. This is trivial when Λ(x) is (almost surely)

equal to either 0 or 1 for all x, as in either case the information content of the signal

is zero. Hence L̄ = E[L(x)] if Λ(x) = 1 (a.s), and L̄ = 0 if Λ(x) = 0 (a.s.). After

disposing of these trivial cases, we turn to the case in which the prior probability of

a price review

Λ̄ ≡
∫

Λ(x)f(x)dx (1.4)

takes an interior value, 0 < Λ̄ < 1. As there are only two possible signals, there are

two possible posteriors, given by

f̂(x|0) =
f(x)(1− Λ(x))

1− Λ̄
, f̂(x|1) =

f(x)Λ(x)

Λ̄
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using Bayes’ Law. The information measure I is then equal to

I = Λ̄I(1) + (1− Λ̄)I(0)

= Λ̄

∫
f̂(x|1) log f̂(x|1)dx + (1− Λ̄)

∫
f̂(x|0) log f̂(x|0)dx−

∫
f(x) log f(x)dx

=

∫
ϕ(Λ(x))f(x)dx− ϕ(Λ̄), (1.5)

where

ϕ(Λ) ≡ Λ log Λ + (1− Λ) log(1− Λ) (1.6)

in the case of any 0 < Λ < 1, and we furthermore define9

ϕ(0) = ϕ(1) = 0.

We can therefore rewrite the objective (1.3) in this case as

L̄ =

∫
[L(x)Λ(x)− θϕ(Λ(x))]f(x)dx + θϕ(

∫
Λ(x)f(x)dx). (1.7)

Given the observation above about the trivial cases, the same formula applies as well

when Λ̄ is equal to 0 or 1. Hence (1.7) applies in the case of any measurable function

Λ(x) taking values in [0, 1], and our problem reduces to the choice of Λ(x) to maximize

(1.7).

This is a problem in the calculus of variations. Suppose that we start with a

function Λ(x) such that 0 < Λ̄ < 1, and let us consider the effects of an infinitesimal

variation in this function, replacing Λ(x) by Λ(x)+ δΛ(x), where δΛ(x) is a bounded,

measurable function indicating the variation. We observe that

δL̄ =

∫
∂(x) · δΛ(x) f(x)dx

where

∂(x) ≡ L(x)− θϕ′(Λ(x)) + θϕ′(Λ̄).

9This definition follows Shannon (1948); our ϕ(Λ) is the negative of his “binary entropy function.”
Note that under this extension of the definition of ϕ(Λ) to the boundaries of its domain, the function
is continuous on the entire interval. Moreover, under this definition, (1.5) is a correct measure of
the information content of the signal (namely, zero) even in the case that one of the signals occurs
with probability zero.
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A first-order condition for (local) optimality of the policy is then at each point x

(almost surely10), one of the following conditions holds: either Λ(x) = 0 and ∂(x) ≤ 0;

Λ(x) = 1 and ∂(x) ≥ 0; or 0 < Λ(x) < 1 and ∂(x) = 0. We can furthermore observe

from the behavior of the function ϕ′(Λ) = log(Λ/1 − Λ) near the boundaries of the

domain that

lim
Λ(x)→0

∂(x) = +∞, lim
Λ(x)→1

∂(x) = −∞,

so that neither of the first two conditions can ever hold. Hence the first-order condi-

tion requires that

∂(x) = 0 (1.8)

almost surely.

This condition implies that

Λ(x)

1− Λ(x)
=

Λ̄

1− Λ̄
exp

{
L(x)

θ

}
(1.9)

for each x. Condition (1.9) implicitly defines a measurable function Λ(x) = Λ∗(x; Λ̄)

taking values in (0, 1).11 It is worth noting that in this solution, for a fixed value of

Λ̄, Λ(x) is monotonically increasing in the value of L(x)/θ, approaching the value 0

for large enough negative values of L(x)/θ, and the value 1 for large enough positive

values; and for given x, Λ∗(x; Λ̄) is an increasing function of Λ̄, approaching 0 for

values of Λ̄ close enough to 0, and 1 for values of Λ̄ close enough to 1. We can extend

the definition of this function to extreme values of Λ̄ by defining

Λ∗(x; 0) = 0, Λ∗(x; 1) = 1

for all values of x; when we do so, Λ∗(x; Λ̄) remains a function that is continuous in

both arguments.

The above calculation implies that in the case of any (locally) optimal policy for

which 0 < Λ̄ < 1, the hazard function must be equal (almost surely) to a member

of the one-parameter family of functions Λ∗(x; Λ̄). It is also evident (from definition

(1.4) and the bounds that Λ(x) must satisfy) that if Λ̄ takes either of the extreme

10Note that we can only expect to determine the optimal hazard function Λ(x) up to arbitrary
changes on a set of values of x that occur with probability zero under the prior, as such changes
have no effect on any of the terms in the objective (1.7).

11We can easily give a closed-form solution for this function: Λ∗(x; Λ̄) = R/1 + R, where R is the
right-hand side of (1.9).
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values 0 or 1, the hazard function must satisfy Λ(x) = Λ̄ almost surely; hence the

hazard function would be equal (almost surely) to a member of the one-parameter

family in these cases as well. We can therefore conclude that the optimal hazard

function must belong to this family; it remains only to determine the optimal value

of Λ̄.

In this discussion, Λ̄ has been used both to refer to the value defined in (1.4) and

to index the members of the family of hazard functions defined by (1.9). In fact, the

same numerical value of Λ̄ must be both things. Hence we must have

J(Λ̄) = Λ̄, (1.10)

where

J(Λ̄) ≡
∫

Λ∗(x; Λ̄)f(x)dx. (1.11)

Condition (1.10) necessarily holds in the case of a locally optimal policy, but it does

not guarantee that Λ∗(x; Λ̄) is even locally optimal. We observe from the definition

that J(0) = 0 and J(1) = 1, so Λ̄ = 0 and Λ̄ = 1 are always at least two solutions to

equation (1.10); yet these need not be even local optima.

We can see this by considering the function L̄(Λ̄), obtained by substituting the

solution Λ∗(x; Λ̄) defined by (1.9) into the definition (1.7). Since any locally optimal

policy must belong to this one-parameter family, an optimal policy corresponds to a

value of Λ̄ that maximizes L̄(Λ̄). Differentiating this function, we obtain

L̄′(Λ̄) =

∫
[L(x)− θϕ′(Λ∗(x))]Λ∗̄Λ(x)f(x)dx + θϕ′(J(Λ̄))

∫
Λ∗̄Λ(x)f(x)dx

= θ[ϕ′(J(Λ̄))− ϕ′(Λ̄)]

∫
Λ∗̄Λ(x)f(x)dx,

at any point 0 < Λ̄ < 1, where Λ∗̄
Λ
(x) > 0 denotes the partial derivative of Λ∗(x; Λ̄)

with respect to Λ̄, and we have used the first-order condition ∂(x) = 0, satisfied by

any hazard function in the family defined by (1.9), to obtain the second line from the

first. Since ∫
Λ∗̄Λ(x)f(x)dx > 0,

it follows that L̄′(Λ̄) has the same sign as ϕ′(J(Λ̄)) − ϕ′(Λ̄), which (because of the

monotonicity of ϕ′(Λ)), has the same sign as J(Λ̄)− Λ̄.

Hence a value of Λ̄ that satisfies (1.10) corresponds to a critical point of L̄(Λ̄),

but not necessarily to a local maximum. The complete set of necessary and sufficient
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conditions for a local maximum are instead that Λ(x) be a member of the one-

parameter family of hazard functions defined by (1.9), for a value of Λ̄ satisfying

(1.10), and such that in addition, (i) if Λ̄ > 0, then J(Λ) > Λ for all Λ in a left

neighborhood of Λ̄; and (ii) if Λ̄ < 1, then J(Λ) < Λ for all Λ in a right neighborhood

of Λ̄. The argument just given only implies that there must exist solutions with

this property, and that they correspond to at least locally optimal policies. In fact,

however, there is necessarily a unique solution of this form, and it corresponds to the

global optimum, owing to the following result.

Lemma 2 Let the loss function L(x), the prior f(x), and the information cost θ > 0

be given, and suppose that L(x) is not equal to zero almost surely [under the measure

defined by f ].12 Then the function J(Λ) has a graph of one of three possible kinds:

(i) if ∫
exp

{
L(x)

θ

}
f(x)dx ≤ 1,

∫
exp

{
−L(x)

θ

}
f(x)dx > 1,

then J(Λ) < Λ for all 0 < Λ < 1 [as in the first panel of Figure 1], and the optimal

policy corresponds to Λ̄ = 0; (ii) if

∫
exp

{
−L(x)

θ

}
f(x)dx ≤ 1,

∫
exp

{
L(x)

θ

}
f(x)dx > 1,

then J(Λ) > Λ for all 0 < Λ < 1 [as in the second panel of Figure 1], and the optimal

policy corresponds to Λ̄ = 1; and (iii) if

∫
exp

{
L(x)

θ

}
f(x)dx > 1,

∫
exp

{
−L(x)

θ

}
f(x)dx > 1,

then there exists a unique interior value 0 < ¯̄Λ < 1 at which J (̄̄Λ) = ¯̄Λ, while

J(Λ) > Λ for all 0 < Λ <¯̄Λ, and J(Λ) < Λ for all ¯̄Λ < Λ < 1 [as in the third panel

of Figure 1], and the optimal policy corresponds to Λ̄ =¯̄Λ.

The proof is again in Appendix A. Note that the three cases considered in the lemma

exhaust all possibilities, as it is not possible for both of the integrals to simultaneously

12This is a very weak assumption. Note that it would be required by the assumption invoked
earlier, that L(x) is strictly quasi-concave. But in fact, since L(0) = −κ, it suffices that the loss
function be continuous at zero and that f(x) be positive on a neighborhood of zero, though even
these conditions are not necessary.
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Figure 1: The three possible shapes of the function J(Λ), as explained in Lemma 2.

In each case, the optimal value of Λ̄ is indicated by the black square.

have a value no greater than 1 (in the case that L(x) is not equal to zero almost

surely), as a consequence of Jensen’s Inequality. Thus we have given a complete

characterization of the optimal policy.

Our results also provide a straightforward approach to computation of the optimal

policy, once the loss function L(x), the prior f(x), and the value of θ are given. Given

L(x) and θ, (1.9) allows us to compute Λ∗(x; Λ̄) for any value of Λ̄; given f(x), it

is then straightforward to evaluate J(Λ) for any 0 < Λ < 1, using (1.11). Finally,

once one plots the function J(Λ), it is easy to determine the optimal value Λ̄; Lemma

2 guarantees that a simple bisection algorithm will necessarily converge to the right

fixed point, as discussed in Appendix B.

1.3 Discussion

We can now see that the optimal signalling mechanism necessarily involves random-

ization, as remarked earlier. In any case in which it is optimal neither to always

review one’s price nor to never review one’s price, so that the average frequency with

which price reviews occur is some 0 < Λ̄ < 1, the optimal hazard function satisfies

0 < Λ(x) < 1, so that a price review may or may not occur, in the case of any current

price gap x.13 This is not simply an assumption. We have allowed for the possibility

of a hazard function which takes the value 0 on some interval (the “zone of inac-

tion”) in which x falls with a probability 1 − Λ̄, and the value 1 everywhere outside

that interval; but this can never be an optimal policy. Hence an optimal signalling

mechanism never provides a signal that is a deterministic function of the true state.

13As usual, the qualification “almost surely” must be added.

14



One can also easily show that our assumption that the signal must be a random

function of the current state x alone; that is, the randomness in the relation between

the observed signal and the value of x must be purely uninformative about the state

of the world — it must represent noise in the measurement process itself, rather than

systematic dependence on some other aspect of the current (or past) state of the

world. We could easily consider a mechanism in which the probability of receiving

a given signal s may depend on both x and some other state y. (Statement of the

problem then requires that the prior f(x, y) over the joint distribution of the two

states be specified.) The same argument as above implies that an optimal policy

can be described by a hazard function Λ(x, y), and that the optimal hazard function

will again be of the form (1.9), where one simply replaces the argument x by (x, y)

everywhere. In the case that the value function depends only on the state x, as

assumed above, the loss function will also be a function simply of x; hence (1.9)

implies that the optimal hazard will depend only on x, and that it will be the function

of x characterized above.

Among the consequences of this result is the fact that the random signals received

by different firms, each of which has the same prior f(x) about its current price gap,

will be distributed independently of one another, as assumed in the Calvo model. If

the signals received by firms were instead correlated (for example, if with probability

Λ̄ all firms receive a signal to review their prices, while with probability 1 − Λ̄ none

of them do), then each firm’s signal would convey information about other firms’

signals, and also about their actions. Such signals would therefore convey more

information (and, under our assumption about the cost of information, necessarily be

more costly) than uncorrelated signals, without being any more useful to the firms

in helping them to make profit-maximizing decisions; the correlated signals would

therefore not represent an efficient signalling mechanism.14 Hence the present model

predicts that while the price-review decision is random at the level of an individual

firm, the fraction of such firms that will review their prices in aggregate (assuming a

large enough number of firms for the law of large numbers to apply) will be Λ̄ with

14Of course, this result depends on an assumption that, as in the setup assumed by Caballero and
Engel (1993a, 2007), the payoff to a firm depends only on its own normalized price, and not also on
the relation between its price and the prices of other imperfectly attentive firms; to the extent that
information about others’ actions is payoff-relevant, an optimal signalling mechanism will involve
correlation.
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certainty.

The present model provides a decision-theoretic justification for the kind of “gen-

eralized Ss” behavior proposed by Caballero and Engel (1993a, 1993b) as an empirical

specification. The interpretation is different from the hypothesis of a random menu

cost in Caballero and Engel (1999) and Dotsey, King and Wolman (1999), but the

present model is observationally equivalent to a random-menu-cost model, in the case

that the distribution of menu costs belongs to a particular one-parameter family. Sup-

pose that firm has perfect information, but that the menu cost κ̃ is drawn from a

distribution with cumulative distribution function G(κ̃), rather than taking a certain

positive value κ with certainty. Then a firm with price gap x should choose to revise

its price if and only if

V (q∗)− κ̃ ≥ V (q∗ + x),

which occurs with probability

Λ(x) = G(V (q∗)− V (q∗ + x)) = G(L(x) + κ), (1.12)

where once again L(x) is the loss function (1.1) of a firm with constant menu cost κ.

Thus (1.12) is the hazard function implied by a random-menu-cost model; the only

restriction implied by the theory is that Λ(x) must be a non-decreasing function of

the loss L(x). The present theory also implies that Λ(x) should be a non-decreasing

function of L(x), as (1.9) has this property for each value of Λ̄. In fact, the optimal

hazard function under rational inattention is identical to the hazard function of a

random-menu-cost model in which the distribution of possible menu costs is given

by15

G(κ̃) = 1−
[
1 +

(
Λ̄

1− Λ̄

)
exp

{
κ̃− κ

θ

}]−1

. (1.13)

While the present model does not imply behavior inconsistent with a random-

menu-cost model, it makes much sharper predictions. Moreover, not only does the

present model correspond to a single very specific one-parameter family of possible

distributions of menu costs, but these distributions are all fairly different from what

is usually assumed in calibrations of random-menu-cost models. In particular, a dis-

tribution of the form (1.13) necessarily has an atom at zero, so that the hazard is

bounded away from zero even for values of x near zero; it has instead been common

15Note that in this formula, κ is a parameter of the distribution, not the size of the menu cost.
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in numerical analyses of generalized Ss models to assume that in a realistic specifi-

cation there should be no atom at zero, so that Λ(0) = 0. The fact that the present

model instead implies that Λ(0) is necessarily positive (if price reviews occur with

any positive frequency) — and indeed, may be a substantial fraction of the average

frequency Λ̄ — is an important difference; under the rule of thumb discussed by Ca-

ballero and Engel (2006), it reduces the importance of the “extensive margin” of price

adjustment, and hence makes the predictions of a generalized Ss model more similar

to those of the Calvo model.

The random-menu-cost model also provides no good reason why, in a dynamic

extension of the model, the adjustment hazard should depend only on the current

price gap x, and not also on the time elapsed since the last price review. This case is

possible, of course, if one assumes that the menu cost κ̃ is drawn independently each

period from the distribution G. But there is no reason to assume such independence,

and the specification does not seem an especially realistic one (though obviously

convenient from the point of view of empirical tractability), if the model is genuinely

about exogenous time variation in the cost of changing one’s price. The theory of

rational inattention instead requires that the hazard rate depend only on the current

state x, as long as the dynamic decision problem is one in which both the prior and

the value function are stationary over time (rather than being duration-dependent),

as in the dynamic model developed in the next section.

2 Microfoundations for the Calvo Model of Price

Adjustment

[To be added.]
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