The Crisis that Wasn't:

How Japan Has Avoided a Bond Market Panic

Mark Bamba (Princeton University) and David E. Weinstein (Columbia University and NBER)

December 29, 2019

9.1 Introduction

In the two decades since Takayama et al. (1999) published their work indicating substantial generational imbalances in Japan arising from Japan's aging population, a large number of papers have been published arguing that that the Japanese government's fiscal situation is not sustainable.¹ Many have interpreted these results as implying that a Japanese default or a hyperinflation was imminent.² The fact that yields on Japanese government bonds (JGBs) have remained low for almost twenty years suggests markets never feared a JGB crisis. Some have suggested that this may reflect a bubble in the JGB market, but if so, it is probably the longest lasting bubble in the history of the world.

This chapter explores the history of Japanese fiscal policy over the past two decades with the aim of better understanding where previous forecasts have erred, and how policies adopted in the second Abe administration have affected Japan's fiscal sustainability. Japan provides an important case study of how a country facing intense fiscal pressures can avoid a hyperinflation or financial panic. We find that there were three key forces that likely improved Japan's fiscal situation relative to more pessimistic predictions. First, the Japanese government has shown remarkable ability to hold down per capita expenditures on social pensions and healthcare. Second, the Japanese government has been able to raise taxes substantially. Third, the

¹ See, for example, Asher and Dugger (2000), Ihori, Doi, and Kondo (2001), Dekle (2002), Kotlikoff (2004), Doi, Hoshi, and Okimoto (2011), Imrohoroglu and Sudo (2011), Hoshi and Ito (2014), and Braun and Joines (2015). ² For example, Asher and Dugger (2000) conclude "Japan's government debt and deficit are on an explosive and unsustainable trajectory." Similarly, Kotlikoff (2004) writes, "There seems to be ample potential for inflation to take off at any moment in Japan and with it, interest rates." Similarly, Fukao (2003) writes, "In my view, the current deflation in Japan can be regarded as a negative bubble; people are shifting assets from stock and real estates to cash, deposits, and government bonds. They are blindly buying government-backed financial assets even though the credit worthiness of the government is rapidly deteriorating. This negative bubble is clearly unsustainable."

remarkable monetary expansion pursued by the Bank of Japan (BOJ) has resulted in a dramatic decline in the amount of government bonds held by the private sector.

Some of these policies can be directly attributable to "Abenomics," while for others, the link is less clear. We argue that Abe's "first arrow," expansive monetary policy, was a clear break from past trends and served to lower the net amount of public debt held by the private sector by 70 percent between 2012 and 2017. As a result, Japan's government debt has been largely monetized. This fact means that while inflation remains a possibility, there is not much scope for a major private sector selloff of Japanese government bonds (JGBs) because so many of them are held by the BOJ and government institutions.

On the fiscal side, we see little evidence of Abe's second arrow (expansionary fiscal policy). The share of government expenditures in gross domestic product (GDP) has stayed remarkably stable at 24-25 percent for every year between 1998 and 2018.³ Total government expenditures fell as a share of GDP and tax revenues rose. While this fiscal austerity was not in line with Abe's initial positions, it did serve to substantially close the Japanese government budget deficit and reduce the gross and net debt levels (as a share of GDP). Thus, the Abe administration was more fiscally conservative than one might have expected at the outset.

In order to understand the disconnect between studies predicting unsustainable policies and market reaction, it is worth bearing in mind a few points. The first is that one must always be wary of any such prediction because of the impossibility theorem that governs forecasts of asset prices. If markets knew with certainty that the Japanese government would default next year, interest rates would skyrocket today, forcing a default today. But if the default is today, then the original "certain" forecast of a default must have been wrong—the default occurred today rather

³ Source: Economic and Statistical Research Institute:

https://www.esri.cao.go.jp/en/sna/data/sokuhou/files/2019/qe193_2/gdemenuea.html

than next year. Given the self-fulfilling nature of defaults and the resulting difficulty in predicting them, we should avoid definitive claims or counterclaims about whether a crisis is inevitable. Nothing is certain; at best, we can talk about default probabilities.

The second point to realize is that discussions on fiscal sustainability can be a bit confusing because showing that a government's fiscal situation is not sustainable does not necessarily mean that a crisis is imminent. Typically, fiscal situations are deemed unsustainable if there is some difference between expected future expenditures by the government and expected future government receipts. For example, both economists and Japanese young people know that the amount of social pension payments relative to social pension contributions is likely to decline. While this means that the current Japanese system is unsustainable because future generations won't get the same benefits as past generations, it does not mean that a crisis will be forthcoming. Default can be averted by revisions in pension indexing formulas, raising the retirement age, raising copays on medical insurance, increasing taxes, more inflation, etc. In other words, fiscal forecasts reveal a future but not necessarily the future. As Dickens's Scrooge avers, we "may change these shadows...by an altered life." Put in the more prosaic language familiar to economists, economic forecasts are built on assumptions about future events and the behavior of government and private agents that may or may not come to pass. But, the fact that we have had two decades of these forecasts provides us with an interesting opportunity to compare what actually happened in Japan with what economists predicted would happen.

In order to do this, we are going to update Broda and Weinstein (2005), which used data up to the year 2000 to forecast what would happen to Japan's fiscal situation over the next 100 years. This paper, optimistically titled, "Happy News from the Dismal Science," is an outlier in the literature as it, along with Morgan (2004), were among a small set of papers arguing that only

modest changes were required to avert a crisis. Broda and Weinstein (2005) implemented Blanchard's (1990) fiscal accounting system. In the Blanchard framework, fiscal sustainability depends on three factors: the current level of Japanese government liabilities and the forecast of future government expenditures and revenues. Broda and Weinstein extended this framework by including the assets and liabilities of the Bank of Japan.

The simplicity of the Blanchard framework has advantages and disadvantages. On the positive side, fiscal sustainability comes down to just a few variables: the level of net debt, the difference between interest and growth rates, monetary policy, and the path of expenditures and taxes. The principle disadvantage is that the calculation does not involve an economic model. The Blanchard approach is essentially an intertemporal budget accounting exercise, but as such it does lay bear the basic factors that need to come into play in order to make a sustainability calculation.

9.2 A Simple Framework for Fiscal Sustainability

To help fix ideas, we first summarize the Blanchard (1990) framework as used in the Broda and Weinstein (2005) paper. In this setup, government expenditures can be divided into three categories: public pension payments and medical benefits for the elderly, H_t ; all other expenditures, except interest, G_t ; and interest on the debt, where B_t is the level of government net debt and i_t is the interest rate on that debt. The government's intertemporal budget constraint can then be written as:

(1)
$$(G_t + H_t + i_t B_{t-1}) - T_t = (B_t - B_{t-1}) + (M_t - M_{t-1}),$$

where G_t is other government non-interest expenditures; H_t is transfers to the old; B_t and i_t are the level of government *net* debt and the interest rate on debt in period *t*, respectively; T_t denotes government revenues; and M_t is the money supply in period *t*. In this setup, any fiscal deficit (given on the left-hand side) must be matched by either increasing net debt or increasing the money supply.

If we divide both sides of equation (1) by nominal GDP and rearrange terms, we obtain

(2)
$$b_{t} = g_{t} + h_{t} - \tau_{t} + \frac{1 + i_{t}}{1 + \eta_{t}} b_{t-1} - \frac{\lambda_{t}}{1 + \lambda_{t}} m_{t},$$

where τ_t is T_t/GDP_t , η_t is the growth rate of nominal GDP, and λ_t is the growth rate of the nominal money supply. Starting with an initial level of debt-to-GDP is given by b_0 , we can express the level of debt-to-GDP in period *n* as:

(3)
$$b_n = \sum_{t=1}^n \left(\frac{1+i_t}{1+\eta_t} \right)^{n-t} \left(g_t + h_t - \tau_t - \frac{\lambda_t}{1+\lambda_t} m_t \right) + \left(\frac{1+i_t}{1+\eta_t} \right)^n b_0.$$

Equation (3) is simply the result of accounting and involves no theories of economic behavior. In this setup the "sustainable" tax rate is defined as the value of τ_t that sets level of debt in the year 2100 equal to that in 2000.

Broda and Weinstein (2005) did not formally model the evolution of each term in equation (3); they just used rules of thumb to produce "plausible" paths under various assumptions about fiscal and monetary policy. More sophisticated papers model the evolution of each of the variables with time subscripts. However our interest is not in testing or calibrating models, but rather to see what actually happened to each of these series empirically with an eye to assessing whether or not taxes in Japan will have to rise if the future behavior of the Japanese government looks like the past behavior.

9.3 Assessing Assumptions

The first key assumption in Broda and Weinstein (2005) was the interest rate gap or the difference between the nominal interest rate and the nominal growth rate. An increase in interest rates relative to growth rates tends to raise the sustainable tax rate because existing debt becomes more costly to repay. Since forecasting this variable is difficult, Broda and Weinstein (2005) used a number of interest rate gaps ranging from 1% to 4%, with a preferred level of 2%.

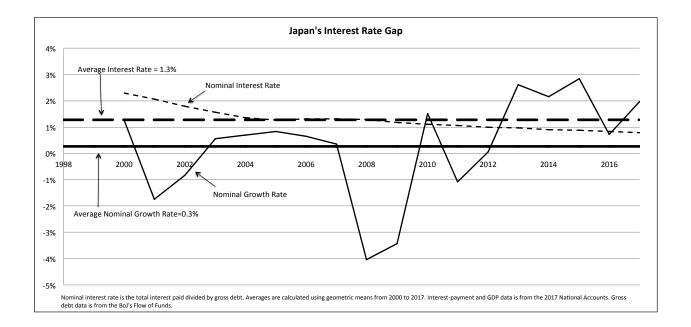


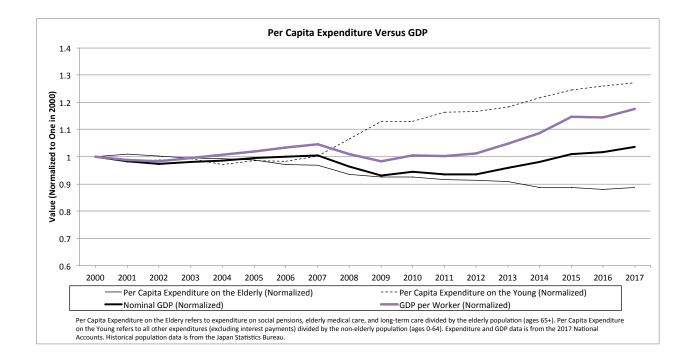
Figure 1

Figure 1 shows the evolution of this rate gap from 2000 to 2017. There are several notable features of the plot. First, while there have been some large swings in Japanese nominal GDP over the past seventeen years, the long-run growth rate of Japanese nominal GDP has been almost constant: only rising by an average of 0.3 percent per year. By contrast, real GDP grew by 0.9 percent per year, with the difference due to the fact that the GDP deflator fell by about 0.6

percent per annum. Second, interest paid on Japanese debt fell consistently over this time period to levels below one percent. These two facts mean that the average interest rate gap was only 1.0 percent. This low interest rate gap—which fell below zero during Kuroda's term (2013present)—meant that it was easier for the Japanese government to finance the debt.

Two other important variables are the expenditures on the "elderly" (h_i) and the "young" (g_i). In Broda and Weinstein (2005), elderly expenditures were composed of government expenditures on social pensions and elderly medical care, which they assumed to be paid to all people over the age of 65. Expenditures on the young constituted all other expenses. Given Japan's rapid aging population, a crucial feature of any sustainability calculation is getting the path of these variables right. Indeed, the principle reason that Broda and Weinstein (2005) was, in Hubbard and Ito's opinion, an "optimistic" assessment of Japan's future can be traced back to forecasts of the development of these variables.

Broda and Weinstein (2005) showed (in their "Case 3") that if one assumed that per capita pension benefits rose with GDP per worker, their proxy for wages, Japan needed to raise taxes dramatically in order to stabilize the debt level. However, a major reason for the optimism of Broda and Weinstein arose because in their baseline cases, they assumed that Japan would be able to hold down the path of per capita expenses on the elderly to rise only as fast as GDP. Given that GDP was essentially flat over the past seventeen years, this implied we should have seen no growth in per capita payments to the elders.


It is important to remember that in terms of the generational accounting approach of Takayama et al. (1999), this sort of fiscal discipline produces large generational imbalances because it implies that current and future Japanese workers will pay taxes that will rise with their earnings but will receive pensions that are indexed to a lower rate. In other words, the current

generation of Japanese workers is making a large net transfer to retirees without a prospect of getting a similar transfer in the future from their children. In this sense, Japan's policy is not sustainable because future generations will get much less in benefits per dollar of taxes paid than past generations. However, it is important to also realize that this does not mean that crisis is imminent.

Whether one assumes that pensions rise with wages (or GDP per worker as in Broda and Weinstein 2005), is a crucial assumption. On one level this assumption seems non-controversial because current pension formulas tie the pensions to wages. However, governments are free to change the rules governing what they will pay retirees, and the Japanese have been particularly apt at (quietly) doing it in a variety of ways. One important step in this direction was implemented in 2004 as the Japanese government reformed the social security law. In this reform, the government changed the social pension indexing formula in such a way that benefits would be reduced if the number of contributors to the system declined or life expectancy rose. Takayama (2005) estimated that this would slow the growth rate of benefits to be 0.9 percent per year less than wages. Moreover, the Japanese government has been aggressive at holding down healthcare fee and price increases while at the same time increasing copayments (thereby shifting healthcare costs from the government to private citizens).

We can see the impact of these policy changes in Figure 2, which displays nominal GDP, nominal GDP per worker, per capita expenditures on the elderly, and per capita expenditures on the young all normalized to equal one in the year 2000. As we noted earlier, nominal GDP rose by a paltry 3.6%, and GDP per worker rose by 18%. What is most striking is that per capita expenditures on the elderly (i.e. government expenditures on social pensions and elderly medical care divided by the elderly population) *declined* by 11 percent between 2000 and 2017. This

decline was not matched by a decline in wages, as Japanese hourly earnings in manufacturing rose slightly over this period. Thus, while the number of elderly rose by over 50 percent between 2000 and 2017, total expenditures on them grew by less because of a reduction in per capita benefits. Interestingly, per capita expenditures on the young did not exhibit this trend, rising faster than even per worker GDP. Here, however, the opposite logic applies. While the per capita expenditures rose, total expenditures rose much slower because the number of young people fell over this time period.

Figure 2

Bringing this discussion back to what Japan's experience tells us about fiscal sustainability, we see that while expenditures on the elderly have been rising, they have been rising at a much lower rate than was forecast even in the most fiscally restrained version of Broda and Weinstein (2005) and substantially slower than forecasts of pension benefits that

proportionally with GDP per worker. In fact, wages in Japan rose much slower; average nominal hourly earnings fell 6 percent between 2000 and 2017 and average wages fell 7 percent.⁴ Both of these forces served to hold down the growth of pension obligations, and this slow growth along with restraint on healthcare spending worked towards preventing a crisis from emerging.

A second important factor in terms of understanding Japan's response to it's aging society is the impact of the 2004 pension reforms on government revenues. As Takayama (2005) discusses, the reforms phased in a 4.72 percentage point increase in the social pension tax between 2004 and 2017. Moreover, the Abe government implemented a three-percentage-point increase in the consumption tax in 2014.

We can see the impact of these policies in Figure 3, which shows Japanese government revenue as a share of GDP and its sources. Between 2000 and 2017, government revenues rose from being just over 30 percent of GDP to 36 percent of GDP. Much of this increase came from social contributions (which rose by 3 percentage points) and sales taxes (which rose by 2 percentage points). To give some sense of how important these tax increases are, we can return to the Broda and Weinstein (2005) forecasts, which suggested that if Japan could hold down the per capita rate of pension rate increases to the GDP growth rate, a six-percentage-point-of-GDP tax increase would render the debt-to-GDP ratio stable over a 100-year horizon in all but the most generous public expenditure scenarios.

⁴ OECD (2019), "Labour: Hourly earnings (Edition 2018)", Main Economic Indicators (database), https://doiorg.ezproxy.cul.columbia.edu/10.1787/1a63d074-en (accessed on 24 December 2019) and OECD (2019), "Average annual wages", OECD Employment and Labour Market Statistics(database), https://doiorg.ezproxy.cul.columbia.edu/10.1787/data-00571-en (accessed on 24 December 2019).

T .	1
Figure	
riguic	2

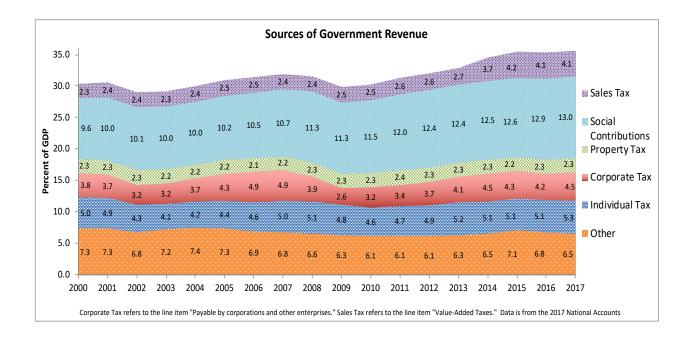
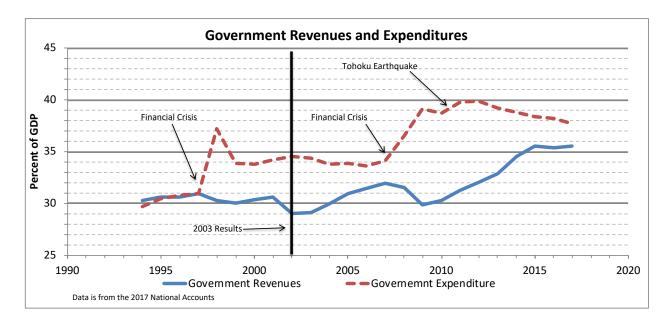
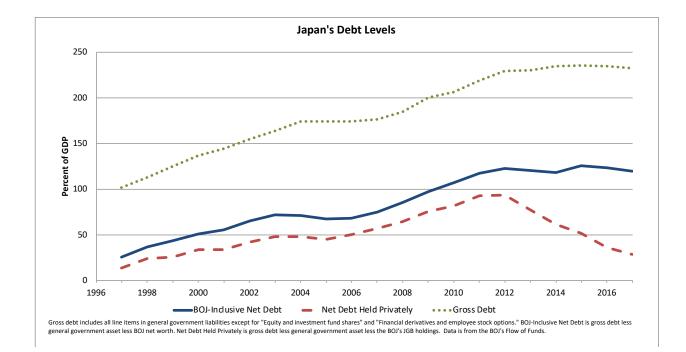




Figure 4

Another way of seeing the impact of these reforms is by looking at the evolution of government revenues and expenditures, expressed as a share of GDP, which is shown in Figure

4. Japanese government expenditures show a clear upward trend driven by the aging society. Most of the big increases followed the economic stimulus packages after the 1997 and 2007 financial crises and the reconstruction package following the Tohoku earthquake. With the exception of these extraordinary events, expenditures have been relatively stable as a share of GDP. More striking is the time path of government revenues, which since 2000 (and especially since 2009) have been rising faster than expenditures. These measures to suppress costs and raise revenues have helped to significantly improve Japan's long-term fiscal outlook.

Figure	5	
--------	---	--

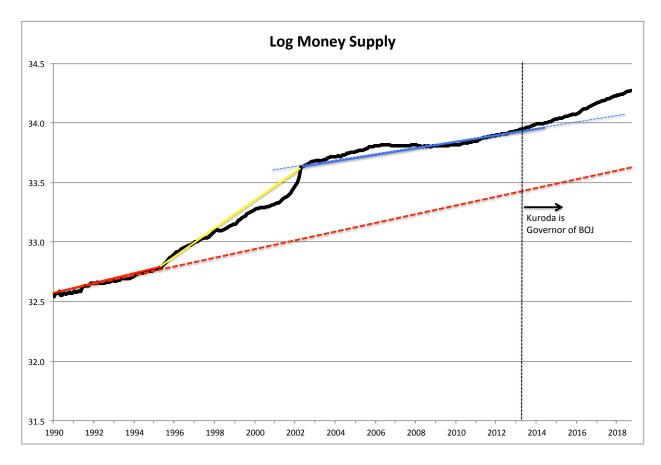
A final component of the sustainability calculation concerns the evolution of Japan's government debt position. The dotted (green) line in Figure 5 shows the steady rise of Japan's gross debt that has been the source of so much consternation. However, what is less well publicized is the financial assets held by the government of Japan. The government owns a large amount of financial assets (principally foreign and domestic government bonds, currency, and

equities), and these assets reduce the net liabilities of the Japanese government and therefore reduce the fiscal pressure.

One can see this formally by modifying equation (1) so that we introduce gross assets and liabilities. Since the definition of net debt is government financial assets less liabilities (i.e., $B_t = L_t - A_t$), we can rewrite equation (1) in terms of gross debt as

(4)
$$[G_t + H_t + i_t (L_{t-1} - A_{t-1})] - T_t = (L_t - L_{t-1}) - (A_t - A_{t-1}) + (M_t - M_{t-1}).$$

It is immediately apparent that any combination of gross assets and liabilities that satisfies equation (4) will also satisfy equation (1). In other words, given a particular path of government expenses and taxes, all that matters for the government budget constraint is the *net* asset position of the government. Thus, if one does the accounting correctly, it does not matter how one wants to do fiscal accounting using net or gross debt. Directly below the gross debt line in Figure 5, lies the BOJ-inclusive net debt share of GDP. Here, we combine the net worth of the BOJ with the net debt of the government, so our numbers differ slightly from official net debt numbers, which exclude the BOJ net worth, but the differences would hardly be visible in the plot. Interestingly, both net and gross debt have been falling as a share of GDP in recent years, which reflects the fiscal consolidation that we saw in Figure 4.


Finally, we also plot the net debt held by the private sector, which equals the net debt of the Japanese government less the JGB holdings of the BOJ. This number is useful for understanding the extent of bond holdings by the private sector. As one can see, private net holdings of JGBs fell sharply after Abe became prime minister, driven largely by the BOJ's open market operations. One implication of this plot is that it would likely be quite difficult for the private sector to precipitate a major selloff of JGBs for the simple reason that so many of them are held by the BOJ or the government. Thus, while it is possible that a rise in inflation might

cause losses in the BOJ's bond portfolio and cause difficulties if the BOJ were to try to tighten monetary policy by selling JGBs, this problem would only be an issue to the extent that the BOJ were not comfortable letting the price level rise. In other words, there is relatively little scope for a loss in confidence in JGBs *per se* to drive the crisis.

One final important element of the calculation is the path of monetary policy. Auerbach and Obstfeld (2003) and Eggertsson and Woodford (2003) made strong cases for large-scale open market operations in order to help stimulate the Japanese economy. The idea that Japan should be following some price-level target along with a positive inflation target has been widely accepted (see, for example Ito and Mishkin (2005)), but the idea seems to invoke deep ambivalence on the part of economists and policymakers. On the one hand, the theory of a pricelevel target dictates that the central bank should allow future inflation to be substantial in order to restore the price level to the level that would have obtained if there had been no deflation. On the other hand, the reality of the implied inflation rates required to achieve a price-level target makes many economists uneasy even as they advocate it.

For example, if one believes that Japan should have targeted the price level in 1997 (as in Ito and Mishkin 2005) and that consumer price inflation should have averaged 2 percent per year since then (due to biases and other factors), then one should also believe that that the price level today should be about 50 percent higher than it is. This creates a bit of a conundrum for policymakers: is the large increase in the money supply and its implications for future inflation a fundamental part of the solution or a fundamental part of the problem?

This issue also raises the question of what monetary policy is "normal" for Japan. As one can see from Figure 6, the growth rate of money supply has been remarkably constant over long horizons in Japan. We see a substantial increase between 1995 and 2002, but aside from that increase (and until the policies of Governor Kuroda), we see little change in the long-run growth rate of the money supply. It is not obvious from this picture how far back in Japanese history we should go to see normal money-supply growth. If we go back to the 1990s, it looks like the level of money in the economy is about 50 percent higher than what we might have expected by extrapolating the trend. Of course, one might argue that the five years following the collapse of the Japanese bubble was an exceptional period, but this begs the question—was monetary policy normal during the bubble years? Following the first oil shock and the collapse of Bretton

Woods? During the high growth period? In other words, without a theoretical model, e.g. a pricelevel target, it is difficult to look at long-run trends for guidance about what monetary policy makes sense for Japan.

One fact that is indisputable is that the recent open market policy of the Bank of Japan has had a dramatic impact on the amount of government bonds held by the private sector. As one can see in the dashed (red) line in Figure 5, the net debt held privately, which equals the net amount of bonds held by agents other than the Japanese government and the Bank of Japan, has fallen precipitously as a percentage of GDP.

This figure provides another important reason why a JGB crisis hasn't materialized there simply are not that many private entities holding Japanese government debt. Obviously, if inflation started to rise, the Bank of Japan might feel conflicted about its desire to reduce money growth and not precipitate a crisis in the bond market, but it seems like the BOJ could easily prevent any spike in JGB interest rates by buying up the small amount of remaining JGBs in the market. This might involve some higher inflation, but it is hard to see how this would turn into a default or even hyperinflation. For example, if Japan ended up with an inflation rate of five percent per year for ten years, Japan's price level would approximately hit the 1997 price level (adjusted by a 2 percent per year inflation rate), more or less what economists had advocated when writing the initial price-level target papers. Avoiding a future like this seems hardly a reason for a central bank to create a crisis in the bond market.

9.4 A New Sustainability Calculation

With this data preview as a background, we are now able to update the results from Broda and Weinstein (2005). These forecasts used data up through 2000 to forecast expenditure and debt levels for the next one hundred years. We are now 17 years into that forecast, so it is reasonable to wonder how well they did. In order to do the update, we now replace forecast values for the years 2000-2017 with actual data and then compare both how the various forecasts performed over this time period and what the revised forecast looks like over the next 83.

Broda and Weinstein (2005) considered three scenarios in their forecasts that allowed for different paths of government benefits. In Case 1, per capita expenditures on the elderly (which we define as those over 65 years of age) were assumed to rise at the same rate as GDP growth while total expenditures on the remaining population were assumed to be a constant share of GDP. In Case 2, per capita expenditures (both on the young and on the elderly) were assumed to always be proportional to GDP. Finally, in Case 3, per capita expenditures (both on the young and the elderly) were assumed to rise with GDP per worker. These three cases differ dramatically in the implied growth rates of Japanese government expenditures for the elderly and young. In other words, Case 3 is the most generous in that all per capita expenditures rise with GDP per worker, Case 1 maintains a generous policy of expenditures for the young but implies more fiscal discipline for expenditures on the elderly, and Case 2 imposes fiscal discipline on both the young and the elderly.

Our sustainability numbers differ slightly from those of Broda and Weinstein (2005) because there have been a number of data revisions in the intervening years principally to population forecasts and GDP. In particular, we use the most recent National Institute of Population and Social Security Research (NIPSSR) forecasts for population (from the 2019 Japan Statistical Yearbook), which differ both from the Faruqee and Muhleisen (2001) forecasts as well as the original NIPSSR forecasts used by Broda and Weinstein (2005). In addition, we

update our historical average values of expenditures using data from the 17 years since 2000,

when Broda and Weinstein (2005) took their data.

				Sustainab	le Tax Rates		
		Cas	se 1	Cas	se 2	Cas	se 3
Forecasts		2018	2003	2018	2003	2018	2003
Rate Gap							
0		33.1	33.6	26.4	27.0	42.7	42.5
1		33.9	34.5	28.1	28.9	42.4	42.1
2		34.7	35.3	29.6	30.7	42.1	41.5
3		35.3	36.0	31.0	32.1	41.9	41.1
4		35.9	36.6	32.2	33.4	41.7	40.7
2003 Tax Rate	29.1						
Current Tax Rate	35.6						

Table	1
-------	---

Sustainable Tax Rate refers to the hypothetical tax rate (measured as general government revenues divided by nominal GDP), if implemented today, that would leave the level of privately held net debt in 2100 the same as it is in 2018. Entries are in percentages of GDP.

In Case 1, per capita expenditures on the elderly are proportional to GDP while expenditures on the young are proportional to GDP.

In Case 2, per capita expenditures (both on the young and on the elderly) are proportional to GDP.

In Case 3, per capita expenditures (both on the young and the elderly) are proportional to GDP per worker.

Both 2003 and 2018 results use population forecasts from NIPSSR.

Table 1 shows the results of this exercise. These numbers can be interpreted as the hypothetical tax rate, if implemented today, that would leave the level of privately held net debt in 2100 the same as it is in 2018, assuming that future expenditures follow three possible scenarios (as outlined earlier) and if the money supply were to grow proportionally to nominal GDP. In each case, the first column reports the sustainable tax rate computed using current data, and the second column replicates the Broda and Weinstein calculation using the data they had available (but adjusted for data and accounting revisions that occurred since then to make the numbers comparable with column 1).⁵

⁵ In addition to accounting revisions, the most recent System of National Accounts (SNA) time-series also spans a shorter time period. While the 2003 results used data from 1980 through 2000, the most recent SNA does not have data before 1994. The time period over which we take averages of expenditures have therefore been modified, so that for expenditures on the young, we take the average from 1994 to 2000 (the maximum length, given the data that we have) while for expenditures on the elderly, we take the average from 1998 to 2000 (we use a three-year time span for elderly expenditures so that we are consistent with our updated results, which will be discussed later).

There are two interesting features of this table. The first is that there's been remarkably little change in the sustainable tax rate between 2003 and 2018. In Cases 1 and 2 the sustainability tax rates fell slightly, and in Case 3 (the most generous case) they went up slightly. Taken at face value, the fact that sustainable tax rates have barely changed since 2003 makes it difficult for us to determine which of the three cases best reflects Japan's fiscal outlook. The drop in the sustainable tax rate in Case 1 occurred largely because of the cost controls on per capita benefits for the elderly and NIPSSR's new population forecasts that expect a faster population decline. However, the same population forecasts are also responsible for the rise in the rate for Case 3, as we now expect a faster working-population decline (relative to the whole population) than was predicted in 2003. For all three cases, the lower-than-predicted expenditures on the elderly have pushed down the updated sustainable tax rate, while the higherthan-predicted expenditure on the non-elderly (often triggered by recession-induced fiscal stimulus packages) have pushed up the updated sustainable tax rate. These offsetting forces have left the sustainable tax rates more-or-less unchanged. However, it is important to note that while past under-predictions in non-elderly expenditures were mostly driven by short-term expenditures (often in response to recessions) that will likely stabilize in the future, past overpredictions in elderly expenditures were due to long-term cost-cutting measures that will likely continue in the future. This observation leads us to favor Case 1 or 2 over Case 3, as the higher tax rate in Case 3 depends wholly on the assumption that the future path of per-capita benefits for the elderly will rise at a much faster rate than we have observed over the past twenty years.

The second notable feature is that the rise in Japanese taxes has pushed Japan closer to the sustainable level. For example, in the preferred specification of the Broda and Weinstein (2005) paper (a 2 percentage point rate gap), government revenues needed to rise by 1.6

percentage points of GDP in Case 2 (our baseline case), 6.2 percentage points in Case 1 and 12.4 percentage points in Case 3. Thanks in large part to the increases in government revenue (from 29.1 percent to 35.6 percent), government revenues as a percent of GDP are now 6 percentage points *above* sustainability for Case 2 (versus 1.6 percent below in the previous forecasts), 0.9 percentage points *above* sustainability for Case 1 (versus 6.2 percent below in the previous forecasts), and 6.5 percentage points below sustainability for Case 3 (versus 12.4 percent below in the previous forecasts). The rise in government revenues is driven primarily by the large tax increases that Japan has already enacted (in social contributions and sales tax).

Our updated numbers therefore indicate that at this level, fiscal policy is sustainable in most scenarios (Cases 1 and 2) and is much closer to sustainability than it was previously for Case 3. Again, if one believes that fiscal discipline will deteriorate in the future (i.e. in Case 3), then Japan will have to raise taxes, but maintaining the current level of aggressiveness at holding down cost increases may be sufficient to avoid tax increases.

			Sustainab	le Tax Rates		
	Cas	se 1	Cas	se 2	Cas	se 3
Forecasts	2018	2003	2018	2003	2018	2003
Rate Gap						
D	33.1	33.6	26.4	27.0	42.7	42.5
1	34.8	34.5	29.0	28.9	43.3	42.1
2	36.4	35.3	31.3	30.7	43.9	41.5
3	37.9	36.0	33.6	32.1	44.4	41.1
4	39.3	36.6	35.6	33.4	45.1	40.7

Τ	al	bl	le	2
-	~	~,	•	_

Current Tax Rate 35.6

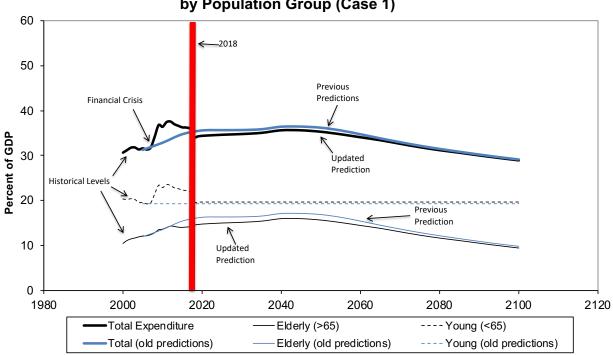
2003 Tax Rate

Sustainable Tax Rate refers to the hypothetical tax rate (measured as general government revenues divided by nominal GDP), if implemented today, that would leave the level of BOJ-inclusive net debt in 2100 the same as it is in 2018. Entries are in percentages of GDP.

In Case 1, per capita expenditures on the elderly are proportional to GDP while expenditures on the young are proportional to GDP.

In Case 2, per capita expenditures (both on the young and on the elderly) are proportional to GDP.

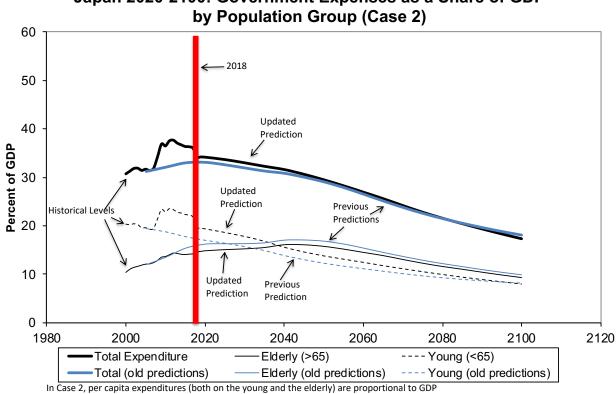
In Case 3, per capita expenditures (both on the young and the elderly) are proportional to GDP per worker.

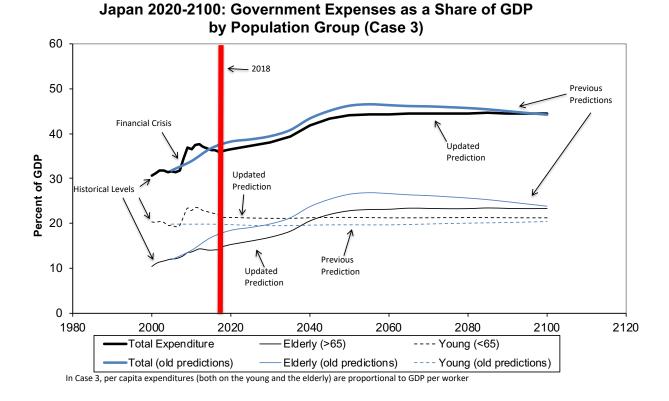

Both 2003 and 2018 results use population forecasts from NIPSSR.

29.1

Table 2 repeats the same exercise using net debt (including the BOJ's net worth) as the relevant measure of debt rather than privately held net debt, which was used in Table 1. Using net debt would be appropriate if we expect the BOJ to unwind its JGB holdings in the coming years. These more conservative estimates raise sustainability tax rates across the board as a higher debt level today implies higher interest payments. Yet we find only modest increases in sustainability tax rates—rising by less than two percentage points for a 2-percentage-point rate gap (our preferred specification) and less than one percentage point for a 1-percentage-point rate gap (which better reflects the 20-year historical average). Thus, even if we exclude the BOJ's recent easing from our analysis, our estimates suggest we can remain optimistic about Japan's fiscal outlook, especially given the increase in the consumption tax that was implement in 2019.

Figures 7-9 further explore the reasons for the different forecasts in Cases 1-3. Each figure portrays historical and forecast expenditure levels for each of our three cases. The lighter (blue) curves show the forecasts for the expenditure levels in total and for the young and old based on where Japan was in the year 2000. The black lines to the left of the vertical bar show what actually happened to the series between 2000 and 2017. The black lines to the right of these series show updated forecasts of the series.




In Case 1, per capita expenditures on the elderly are proportional to GDP while expenditures on the young are proportional to GDP.

Japan 2020-2100: Government Expenses as a Share of GDP

Figure 9

Comparing the historical expenditure levels with what was predicted in 2003 (the section of the plots to the left of the vertical bar), we can make a few observations. The first is that most of the discrepancies between the actual numbers and the 2003 predictions were a result of the increases in government spending stemming from the financial crisis and the Tohoku earthquake. We can see in all three plots that the actual expenditures on the young (which includes all expenditures that are not for the elderly and would therefore include expenditures from a fiscal stimulus) overshot the predicted expenditure levels by several percentage points starting in 2008 and has been slow to fall back to pre-crisis levels. While these expenditure levels may not return to levels seen before the crisis, our forecasts assume that they will continue to fall to some extent as the remaining effects from these temporary shocks taper off and Abe's government aims to balance its budget in the coming years. The second observation is that expenditures on the elderly—the part of government expenditures that is much less sensitive to economic fluctuations—has *undershot* the 2003 predictions in all three cases. This is particularly prominent in Case 3 where the actual expenditure numbers were almost three percentage points of GDP lower than what was predicted (a difference of 20% from the actual numbers), offsetting the recession-induced higher expenditures on the young. This slower-than-predicted rise in elderly expenditures can in part be attributed to the cost controls on elderly expenditures that were discussed earlier. However, the pronounced discrepancy for Case 3 also highlights the point made earlier—that the assumption of per capita expenditures on the elderly rising with per worker GDP also contributed to the significant overestimate in elderly expenditures.

Our updated expenditure forecasts (to the right of the vertical bar) reflect these two observations. First, we predict a higher per capita expenditure on the young (as a share of GDP) than we did in our 2003 results, but below what we have seen following the financial crises.⁶ This assumption is why for all three plots, the dotted dark line (the updated predictions on young expenditures) immediately after the vertical bar is above the dotted light line (the 2003 predictions on young expenditures) but still below the historical expenditure levels immediately before the red bar. In other words, we predict that all else equal (i.e. if the population stayed the same), non-elderly government expenditures should fall to a level between what we have today and what we saw before the recession. Second, we lower our predictions for per-capita expenditures on the elderly (as a share of GDP) to reflect the lower-than-expected expenditure levels we have seen over the past few years.⁷ This is the primary reason our updated forecasts for

⁶ We make this prediction based on the historical average of government expenditures on the young between 2000 and 2015. We use a 16 year time range (including both the pre- and post-crisis years) so that we can average out the volatility in spending as a result of economic fluctuations.

⁷ More specifically, we estimate this value by taking the average per capita expenditure on the elderly over the previous three years (i.e. 2015 to 2017).

elderly expenditure lie slightly below the 2003 predictions for the whole forecasting duration in all three plots. It is worth noting that while these modifications shift the expenditure curves upwards or downwards (by altering their respective proportionality constants), this does not change the fundamental assumptions. In Cases 1 and 2, we still predict per capita expenditure on the elderly to rise proportionally with GDP, an assumption that has matched the actual data reasonably well in the past, and in Case 3, we expect per capita expenditures to rise proportionally to GDP per worker, an assumption that has significantly overestimated elderly expenditures.

This would suggest there is reason to be optimistic about Japan's sustainability. In both Cases 1 and 2, we find that Japan's tax rate is already at a sustainable level. And for the one scenario that indicates Japan's current tax rate is not sustainable (Case 3), we find that the underlying assumption led to significant overestimates of elderly expenditures, suggesting that it may not accurately reflect the ability of the Japanese government to rein in expenses.

9.5 Conclusion

This chapter re-examines Japan's fiscal and monetary policy over the past two decades and finds that the Japanese government has been remarkably adept at restraining benefit growth, raising taxes, and monetizing debt without generating inflation. Japan still needs to continue to balance the generosity of its social pension program with future tax increases, but the simplest interpretation of why markets have not responded to studies showing Japanese finances are troubled is that they have confidence in Japanese policymakers' ability to work out good compromises. If this approach continues, Japan may very well avoid either a financial crisis or a major inflationary episode.

References

- Asher, David Louis, and Robert H Dugger. *Could Japan's Financial Mount Fuji Blow Its Top?*. MIT International Science and Technology Initiatives, Center for International Studies, Massachusetts Institute of Technology, 2000.
- Blanchard, Olivier. "Suggestions for a New Set of Fiscal Indicators" OECD Economics Department Working Papers No. 79 (1990). doi:http://dx.doi.org/10.1787/435618162862.
- Braun, R Anton, and Douglas H Joines. "The Implications of a Graying Japan for Government Policy." *Journal of Economic Dynamics and Control* 57 (2015): 1–23.
- Broda, Christian, and David E Weinstein. "Happy News from the Dismal Science: Reassessing the Japanese Fiscal Policy and Sustainability." In *Reviving Japan's Economy*, edited by Ito Takatoshi, David Weinstein, and Hugh Patrick, 40–78. MIT Press, 2005.
- Dekle, Robert. "Population Aging in Japan: Its Impact on Future Saving, Investment, and Budget Deficits." Department of Economics, USC, 2002.
- Doi, Takero, Takeo Hoshi, and Tatsuyoshi Okimoto. "Japanese Government Debt and Sustainability of Fiscal Policy." *Journal of the Japanese and International Economies* 25, no. 4 (2011): 414–33.
- Eggertsson, Gauti B, and others. "Zero Bound on Interest Rates and Optimal Monetary Policy." Brookings Papers on Economic Activity 2003, no. 1 (2003): 139–233.
- Faruqee, Hamid, and Martin Mühleisen. "Population Aging in Japan: Demographic Shock and Fiscal Sustainability." IMF Working Paper WP/01/40. Research and Asia and Pacific Departments, 2001.
- Fukao, Mitsuhiro. "Financial Strains and the Zero Lower Bound: The Japanese Experience" BIS Working Papers No 141 (2003).
- Hoshi, Takeo, and Takatoshi Ito. "Defying Gravity: Can Japanese Sovereign Debt Continue to Increase without a Crisis?" *Economic Policy* 29, no. 77 (2014): 5–44.
- Ihori, Toshihiro, Takero Doi, and Hiroki Kondo. "Japanese Fiscal Reform: Fiscal Reconstruction and Fiscal Policy." *Japan and the World Economy* 13, no. 4 (2001): 351–70.
- Imrohoroglu, Selahattin, and Nao Sudo. "Will a Growth Miracle Reduce Debt in Japan?" IMES Discussion Paper Series 2011-E-1, 2011.
- Ito, Takatoshi, and Frederic S Mishkin. "Monetary Policy in Japan: Problems and Solutions." ." In *Reviving Japan's Economy*, edited by Ito Takatoshi, David Weinstein, and Patrick Hugh, 131–201. MIT Press, 2005.
- Kotlikoff, Laurence J. "Assessing Japan's Long-Term Fiscal Health." U.S. Department of State Bureau of Intelligence and Research, 2004.
- Obstfeld, Maurice. "The Case for Open-Market Purchases in a Liquidity Trap." *The American Economic Review* 95, no. 1 (2005): 110–37.
- Takayama, Noriyuki. "The Balance Sheet of Social Security Pensions in Japan." Hitotsubashi University Repository, 2004.

Takayama, Noriyuki, Yukinobu Kitamura, and Hiroshi Yoshida. "Generational Accounting in Japan." In *Generational Accounting around the World*, 447–70. University of Chicago Press, 1999.

Technical Appendix

In this section, we detail our data sources and methodology. Data:

1. The Cabinet Office's Annual Report on National Accounts for 2017 is the source of our data for historical expenditures, government revenues, interest paid on debt, transfers made to the elderly, and GDP. This is available (at the time of this writing) here:

https://www.esri.cao.go.jp/en/sna/data/kakuhou/files/2017/2017annual_report_e.html

The Excel file with GDP can be obtained under the specification of "Fiscal Year" at "Current Prices" in section "IV. Main Time Series," under "1. Gross Domestic Product (Expenditure Approach)." In the spreadsheet, row 48 (called "5. Gross domestic product (expenditure approach) (1+2+3+4)") is used.

The Excel file containing expenditure, revenue, and interest data can be obtained under the "V. Supporting Tables" section under a link called "(6-2) Account classified by the Sub-sectors of General Government(GFS)". In the spreadsheet, we use row 9 (called "1 Revenue") for government revenues, row 85 (called "2 Expense") for expenditures, and row 95 (called "24 Interest") for the government's interest expenses (the interest expense is used to create Figure 1 and also to calculate the non-elderly expenditures, which is defined as total expenditures minus elderly expenditures and interest expenses. This spreadsheet is also used to create Figure 3 using row 12 ("1111 Payable by individuals"), row 13 ("1112 Payable by corporations and other enterprises"), row 16 ("113 Taxes on property"), row 24 ("11411 Value-added taxes"), and row 45 ("12 Social contributions").

The Excel file containing data on elderly expenditures can be obtained from the link "(9) Transfers from General Government to Households (Social Security Transfers)" from the Supporting Tables. From the spreadsheet, we use row 11 ("a. Public pension (excluding children allowances)(*2)"), row 23 ("(3) New medical care system for the Elderly"), row 38 ("(9) Long-term care insurance"), row 20 ("(b) Pensions" –these are pensions under Seamen's insurance) and rows 27, 30, 33 (all are called "(b) Long-term"), which correspond to each of the long-term expenditures from the three mutual benefit association line items ("a. Federation of national public personnel mutual aid associations", "b. Pension fund association for local government officials", and "c. Others").

2. Future population estimates are taken from Japan's NIPSSR.

Future population predictions are available (at the time of this writing) here:

http://www.stat.go.jp/english/data/nenkan/68nenkan/1431-02.html

using the link "Future Population." We use the "65 and older" columns for the elderly population, the "15-64" column for the working-age population, and the sum of the "15-64" column and the "0-14" column for the young population.

3. Historical population numbers are taken from Japan's Statistics bureau using their E-Stat portal: <u>http://www.e-stat.go.jp/SG1/estat/ListE.do?bid=000001039703&cycode=0</u>

(in case this link becomes unavailable, the site is also accessible through the link called "Time Series 2000 - 2015" from the Statistics Bureau website:

http://www.stat.go.jp/english/data/jinsui/2.htm)

The population time-series called "Population by Age (Five-Year Groups and 3 Groups) and Sex (as of October 1 of Each Year) - Total population, Japanese population (from 2000 to 2015)" is used. Historical population numbers for the young (below 65 years old), elderly (65 and older), and working (15-64) are available in this workbook for the years 2000-2015. For 2016 and 2017

(the years that follow the most recent population census), we use data from the 2017 annual report under the table title: "Population and Percentage distribution by Age (5-Year Age Group) and Sex - Total population, October 1, Each Year"

4. Historical debt level data comes from BOJ's Flow of Funds.

Historical levels for each fiscal year can be found on the BOJ's time-series data search tool found here: <u>https://www.stat-search.boj.or.jp/index_en.html</u>

Historical balance sheet data is available on this website using the "Flow of Funds" link (available here, at the time of this writing: <u>https://www.stat-search.boj.or.jp/ssi/cgi-bin/famecgi2?cgi=\$nme_a000_en&lstSelection=FF</u>). For gross debt, we sum together all categories in the General Government's liabilities except for "Equity and investment fund shares" and "Financial derivatives and employee stock options." For the government's assets (for calculating BOJ-inclusive net debt), we sum all categories in the General Government's assets. For the BOJ's net worth (for calculating BOJ-inclusive net debt), we sum all of the central bank's asset categories except for "Others" and subtract the liabilities the BOJ has in the "Loans" and "Currency and deposits" categories. For the BOJ's net assets (for calculating the privately held net debt), we sum all of the central bank's asset categories except for "Currency and deposits" and subtract the liability the BOJ has in the "Loans" category. These Flow of Funds statistics and categories can also be seen in more reader-friendly excel

These Flow of Funds statistics and categories can also be seen in more reader-friendly excel tables in BoJ's annual Flow of Fund releases that can be found here:

http://www.boj.or.jp/en/statistics/sj/index.htm/. However, these only provide the statistics for one year, so we still use the time-series data tool to obtain the full balance-sheet time series. Method:

As discussed briefly in the main text, an important step in projecting future expenditures is the determination of the proportionality constants for each of the assumptions. For expenditures on the young, we take three approaches. For Case 3, we compute the young expenditure (as a share of GDP) multiplied by the working population divided by the population of the young for each year, and take the average of this value over the period from 2000 to 2017.8 To project the future expenditure on the young, we would multiply this average by the projected young population and divide by the projected working population. For Cases 1 and 2, we first compute the average young expenditure (as a share of GDP) divided by the young population, and take the average of this value for the period from 2000 to 2017 (this would be the average per capita expenditure on the young as a share of GDP).⁹ For Case 2, we then multiply this average by the projected population of the young. For Case 1 (where young expenditure is a constant share of GDP) we simply take the first projection of the young expenditure level as a share of GDP (i.e. for FY2018) for Case 2 and then assume that this expenditure level (as a share of GDP) remains constant. For expenditures on the elderly, we compute similar averages. For Case 3, we compute the elderly expenditure (as a share of GDP) multiplied by the working population divided by the elderly population for each year, and take the average of this value over the three-year period from 2015 to 2017.¹⁰ To project the future expenditure on the elderly, we multiply this average by the projected elderly population and divide by the projected working population. For Cases 1 and 2, we compute the elderly expenditure (as a share of GDP) divided by the elderly population,

⁸ For the 2003 replications, we take the average from 1994 to 2000.

⁹ Again, the average is taken for 1994-2000 for the 2003 replications.

¹⁰ For the 2003 replications, we take the average over the years 1998-2000.

and take the average of this value for the years 2015 through 2017.¹¹ For both Cases 1 and 2, we then multiply this average by the projected elderly population for a particular year.

¹¹ Again, the average is taken for 1998-2000 for the 2003 replications.