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I. Introduction

Measuring welfare changes is a fundamental issue in economics, which arises in a number of contexts, not

least in the measurement of changes in the cost of living.1 This problem arises frequently in macroeconomics

and international trade, where constant elasticity of substitution (CES) preferences are commonly used to

compute the change in the cost of living between a pair of time periods. A challenge in such an analysis is that

one’s assumed preference structure does not perfectly fit the data in both time periods without the inclusion

of a residual, which is necessarily directly related to observed expenditure shares, and can reflect systematic

unobserved changes in tastes. In response to this challenge, one can either take the position that all demand

(taste) shocks are equivalent to price shocks and compute the change in the cost of living by adjusting the

observed price shocks using the time-varying demand residuals. Or one can take the position of holding the

taste parameters constant (e.g. at their initial values) and compute the change in the cost of living using the

observed price shocks and ignoring changes in the demand residuals.

Though both interpretations are valid, a key building block for the existing exact price index for CES

preferences (the Sato-Vartia price index for varieties common to a pair of time periods) is inconsistent with

either interpretation.2 Under the assumption of time-invariant tastes, this price index uses observed expenditure

shares and changes in prices to compute changes in the cost of living. However, the final-period expenditure

shares used in the weights for each variety in this price index include time-varying demand residuals, which

gives rise to an internal inconsistency. If these demand residuals are not taste shocks, they are correctly excluded

from the measured changes in prices, but incorrectly included in the expenditure share weights. If these demand

residuals are taste shocks, they are correctly included in the expenditure share weights, but incorrectly excluded

from the measured changes in prices. The treatment of these demand residuals becomes particularly important

in a world in which consumer tastes can move substantially (with fads, fashions and other fluctuations in tastes)

and exhibit systematic patterns in the data.

In this paper, we develop a new exact price index for CES preferences that consistently treats demand

shocks as taste shocks that are equivalent to price shocks. We propose computationally feasible measures of

these taste shocks and an intuitive correction to existing measures of the change in the cost of living. An exact

price index (or equivalently a money-metric utility function) measures the change in the cost of living solely in

terms of observed prices and expenditures. Therefore, the existence of such an exact price index requires that

we rule out the possibility of a change in the cost of living when all prices and expenditures remain unchanged.

As expenditures depend on relative consumer tastes (and not the absolute level of these consumer tastes), an

implication is that an exact price index rules out an equiproportional change in consumer tastes. We therefore

require a normalization or constant choice of units in which to measure consumer tastes. If there exists good

for which a researcher is confident that consumer tastes did not change, the assumption of a constant taste

parameter for that good is one such normalization. In the absence of an obvious candidate for such a good

1Recent contributions to the measurement of the cost of living and aggregate productivity across countries and over time include
Bils and Klenow (2001), Hsieh and Klenow (2009), Jones and Klenow (2016), Feenstra (1994), Neary (2004) and Syverson (2017).

2The existing exact price index for CES preferences combines the Feenstra (1994) entry and exit correction (which allows for
time-varying taste parameters for varieties that are not supplied in both periods) with the Sato (1976) and Vartia (1976) price index for
varieties that are common to both periods (which assumes constant taste parameters for each common variety).
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in our barcode data, we assume that the geometric mean of the consumer taste parameters is constant. This

normalization is consistent with the assumption that the log demand shocks are mean zero in the estimation of

the demand system. But as other normalizations for consumer tastes are possible, we examine the robustness

of our results to alternative normalizations using the class of generalized means.

Our approach uses the invertibility of the CES demand system to recover unique values for unobserved

consumer tastes for each variety (up to this normalization). We use this result to derive an exact price index for

the change in the cost of living in terms of only prices and expenditure shares, while allowing for changes in

relative consumer tastes across varieties. We show that our estimated taste shifts are not simply measurement

or specification errors, because they are strongly related to separate measures of brand asset values from a

marketing firm using a completely different methodology: a survey of consumer preferences. A limitation

is that we focus for most of our analysis on homothetic CES preferences, because of their prominence in

international trade, macroeconomics and economic geography. Nonetheless, we show that our approach can be

implemented for other invertible demand systems, including non-homothetic CES (indirectly additive), nested

CES, mixed CES, logit, mixed logit, translog and almost ideal demand system (AIDS) preferences.

We show that the inconsistent treatment of the time-varying demand residuals in the Sato-Vartia index

introduces a bias that we term the “taste-shock bias.” In particular, through its use of observed rather than taste-

adjusted prices, the Sato-Vartia index fails to take account that an increase in taste for a variety is analogous to

a fall in its price. Therefore, for varieties experiencing increases in tastes, the measured contribution to the cost

of living is above the true contribution. In contrast, for varieties experiencing reductions in tastes, the measured

contribution to the cost of living is below the true contribution. This introduces a systematic bias, because an

increase in consumer taste for a variety raises its expenditure share and hence its weight in the cost of living. As

a result, the errors from ignoring increases in tastes (which reduce the true cost of living below the measured

cost of living) are weighted more highly than the errors from ignoring reductions in tastes (which raise the true

cost of living above the measured cost of living), thereby giving rise to an upward bias in the Sato-Vartia index.

This bias is related to the well-known “quality bias” from failing to take into account quality improvements,

because the taste parameter for each variety enters the expenditure function in the same way as quality and

inversely to price. However, an important difference with the quality bias is that the taste-shock bias is present

even if taste changes are mean zero, and it is not dependent on unmeasured average quality rising. We show

that our taste-shock bias is not eliminated by using chain-weighted rather than fixed-weighted price indexes,

because it arises from the internal inconsistency of using observed expenditure shares (which include time-

varying demand residuals) and observed prices (which do not include these time-varying demand residuals).

Empirically, we find this taste-shock bias to be substantial, on average 0.4 percentage points per annum, and

sizable relative to the bias from failing to take account of the entry and exit of varieties in measuring the cost

of living.

Our approach addresses two notable limitations with the existing Sato-Vartia price index. First, this existing

price index rules out by assumption the possibility that a consumer’s relative tastes for any two varieties can

change over time, whereas it is intuitively plausible that such movements in relative tastes can occur (e.g. with

changes in fashion, societal trends, lifestyle, or product knowledge). Second, while our exact price index allows
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for these changes in relative tastes, it is also valid under the Sato-Vartia index’s assumption of no changes in

consumer tastes for each common variety. Therefore, under this conventional assumption of time-invariant

consumer tastes, one should obtain the same change in the cost of living using our exact price index as using

the Sato-Vartia index. Contrary to this prediction, we find the Sato-Vartia index is biased upwards by 0.4

percentage points per year relative to our index, which raises the question of what explains these differences.

One potential explanation could be departures from the CES functional form. However, we show below that

in barcode data the Sato-Vartia index generates similar measured changes in the cost of living as existing

superlative indexes that are exact for flexible functional forms, such as the Fisher and Törnqvist indexes, which

suggests that CES preferences provide a reasonable approximation to the data. Our approach presents a natural

alternative explanation for these differences between our exact price index and the Sato-Vartia index, in terms

of changes in relative consumer tastes. We show that the same taste-shock bias from abstracting from changes

in relative tastes is present for superlative price indexes such as the Törnqvist index.

Our paper is most closely related to the literature on the estimation of CES price indices, including Feenstra

(1994) and Broda and Weinstein (2006, 2010). We point out the tension that arises in this literature from

combining a variety adjustment term based on the estimation of a CES demand system and a Sato-Vartia price

index for continuing varieties. The issue is that the demand system estimation involves the inclusion of a

time-varying demand residual, whereas the Sato-Vartia price index for continuing varieties is only consistent

with CES demand if there no demand shocks. To resolve this tension and be fully consistent with both CES

preferences and the demand system estimation, we drop the Sato-Vartia index for continuing varieties, and

replace it with our new exact price index that allows for a time-varying demand residual for each continuing

good, given our normalization or choice of units in which to measure these demand residuals.

More broadly, our paper is related to research on the “economic approach” to price measurement following

Konüs (1924), in which price indexes are derived from consumer theory through the expenditure function. This

long line of research includes Fisher and Shell (1972), Lloyd (1975), Diewert (1976, 2004), Sato (1976), Vartia

(1976), Lau (1979), Feenstra (1994), Hausman (1997), Moulton (1996), Balk (1999), Caves, Christensen and

Diewert (1982), Nevo (2003), Neary (2004), Feenstra and Reinsdorf (2007, 2010), Białek (2017), and Diewert

and Feenstra (2017). Our paper is also related to the voluminous literature in macroeconomics, trade and

economic geography that has used CES preferences, including Dixit and Stiglitz (1977), Krugman (1980,

1991), Antràs (2003), Melitz (2003), Hsieh and Klenow (2009), and Arkolakis, Costinot and Rodriguez-Clare

(2012), among others. We show that our methodology also holds for the closely-related logit model, and hence

our work connects with the large body of applied research using this model, as synthesized in Anderson, de

Palma and Thisse (1992) and Train (2009). Increasingly, researchers in trade and development are turning to

barcode data in order to measure the impact of globalization on welfare. Prominent examples of this include

Handbury (2013), Atkin and Donaldson (2015), and Atkin, Faber, and Gonzalez-Navarro (2015), and Fally and

Faber (2017). Our contribution relative to these studies is to allow for both changes in tastes for each variety

and entry and exit, while preserving an exact price index in terms of prices and expenditure shares.

Finally, our work connects with research in macroeconomics aimed at measuring the cost of living, real

output, and quality change. Shapiro and Wilcox (1996) sought to back out the elasticity of substitution in the
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CES index by equating it to a superlative index. Whereas that superlative index number assumed time-invariant

tastes for each variety, we explicitly allow for time-varying tastes for each variety, and derive the appropriate

index number in such a case. Bils and Klenow (2001) quantify quality growth in U.S. prices. We show how

to incorporate changes in quality (or consumer tastes) for each variety into a unified framework for computing

changes in the aggregate cost of living over time.

The remainder of the paper is structured as follows. Section II. introduces our new exact price index for

CES preferences. Section III. develops a number of extensions and generalizations, including non-homothetic

CES (indirectly additive), nested CES, mixed CES, logit, mixed logit, translog and AIDS preferences. Section

IV. introduces our barcode data for the U.S. consumer goods sector. Section V. presents our main empirical

results for CES preferences and demonstrates the quantitative relevance of allowing for changes in tastes for

the measurement of the cost of living. Section VI. introduces our mixed CES extension. Section VII. contains

a number of further robustness tests. Section VIII. concludes. An online appendix collects together technical

derivations, additional information about the data, and supplementary empirical results.

II. Demand and Price Indexes with CES Preferences

We begin by deriving our new exact price index for CES preferences. To simplify the exposition, we consider

a single nest of utility (e.g. an economy consisting of a single sector including many varieties). In Section III.,

we extend our analysis to accommodate multiple CES nests and more flexible functional forms.

II.A. Preferences

Under the assumption of homothetic CES preferences, the unit expenditure function (Pt) depends on the price

(pkt) and consumer taste (ϕkt) for each variety k at time t:

Pt =

[
∑

k∈Ωt

(
pkt

ϕkt

)1−σ
] 1

1−σ

, σ > 1, (1)

where σ is the constant elasticity of substitution between varieties; we assume that varieties are substitutes

(σ > 1); and Ωt is the set of varieties supplied at time t.3 The parameter ϕkt captures consumer tastes

and allows for both differences in the average level of tastes across varieties (some varieties are always more

popular than others in all time periods) and also changes in tastes for individual varieties over time (some

varieties become more or less popular relative to others over time).

II.B. Demand System

Applying Shephard’s Lemma to this unit expenditure function (1), we obtain the demand system, in which the

expenditure share (skt) for each variety k and time period t is:

3We focus on CES preferences as in Dixit and Stiglitz (1977) and abstract from the generalizations of the love of variety properties
of CES in Benassy (1996) and Behrens et al. (2014).
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skt ≡
pktckt

∑`∈Ωt
p`tc`t

=
(pkt/ϕkt)

1−σ

∑`∈Ωt (p`t/ϕ`t)
1−σ

=
(pkt/ϕkt)

1−σ

P1−σ
t

, k ∈ Ωt, (2)

where ckt denotes consumption of variety k at time t.

Rearranging this expenditure share (2), we obtain the following equivalent expression for the unit expendi-

ture function that must hold for each variety k ∈ Ωt:

Pt =
pkt

ϕkt
s

1
σ−1
kt . (3)

To allow for the entry and exit of varieties over time, we define the common set of varieties between a

pair of time periods t and t− 1 (Ω∗t ) as those that are supplied in both periods (such that Ω∗t = Ωt ∩Ωt−1).

Summing expenditures across these common varieties, we obtain the following expression for the aggregate

share of common varieties in total expenditure in period t (λt):

λt =
∑k∈Ω∗t

pktckt

∑k∈Ωt
pktckt

=
∑k∈Ω∗t (pkt/ϕkt)

1−σ

∑k∈Ωt (pkt/ϕkt)
1−σ

. (4)

Using this expression, the share of an individual variety in total expenditure (skt) in equation (2) can be

re-written as its share of expenditure on common varieties (s∗kt) times this aggregate share of common varieties

in total expenditure (λt):

skt = λts∗kt = λt
(pkt/ϕkt)

1−σ

∑`∈Ω∗t (p`t/ϕ`t)
1−σ

, k ∈ Ω∗t , (5)

where we use an asterisk to denote the value of a variable for common varieties k ∈ Ω∗t .

Two well-known properties of this CES demand system are the independence of irrelevant alternatives

(IIA) and the symmetry of substitution effects. The first property implies that the relative expenditure share

of any two varieties in equation (5) depends solely on their relative prices and taste parameters and not on the

characteristics of any other varieties: skt/s`t = [(pkt/ϕkt) / (p`t/ϕ`t)]
1−σ. The second property implies that

the elasticity of expenditure on any one variety (xkt = pktckt) with respect to a change in the price of another

variety depends solely on the expenditure share of that other variety: (∂xkt/∂p`t) (p`t/xkt) = (σ− 1) s`t. We

relax both these assumptions in Section III. below, where we consider mixed CES preferences with heteroge-

neous consumers and the flexible functional forms of translog and AIDS preferences.

We treat the time-varying residual in the demand system (5) as a consumer taste shock (ϕkt) that also

appears in the unit expenditure function (1). We note that there are other possible interpretations, including

changes in product quality, measurement error and specification error. Our use of barcode data in our empir-

ical application implies that changes in product quality are unlikely, because firms have strong incentives of

inventory and stock control not to use the same barcode for products with different observable characteristics.

Therefore, changes in product characteristics lead to the introduction of a new barcode, and are reflected in

the entry and exit of barcodes, instead of changes in quality within surviving barcodes. Similarly, our use of

barcode data alleviates concerns about measurement error. Although specification error remains a possibil-

ity, any model is necessarily an abstraction and will require a time-varying demand residual to fit the data.
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While we assume CES preferences in our baseline specification, we show below that our main insight gener-

alizes to other preference structures, including flexible functional forms such as translog. In developing our

approach, we highlight that the Sato-Vartia index’s assumption of time-invariant tastes is inconsistent with us-

ing expenditure-share weights that include time-varying demand residuals, and demonstrate the quantitative

relevance of this inconsistency for the measurement of changes in the cost of living.

II.C. Price Index

We now combine the unit expenditure function (3) and the relationship between expenditure shares (5) to

measure the change in the cost of living over time (Pt/Pt−1). Using these two equations, the change in the

cost of living can be written in terms of the change in the price (pkt/pkt−1), tastes (ϕkt/ϕkt−1) and common

variety expenditure share (s∗kt/s∗kt−1) of any individual common variety k ∈ Ω∗t and a variety correction term

that controls for entry and exit (λt/λt−1):

Pt

Pt−1
=

pkt/ϕkt

pkt−1/ϕkt−1

(
λt

λt−1

s∗kt
s∗kt−1

) 1
σ−1

, k ∈ Ω∗t . (6)

We now use this relationship to derive an exact price index that expresses the change in the cost of living

solely in terms of observed prices and expenditures. As expenditures depend on relative consumer tastes (and

not the absolute level of consumer tastes), the existence of such an exact price index requires that we rule out

the possibility of a change in the cost of living, even though all prices and expenditures remain unchanged.

We therefore require a normalization or constant choice of units in which to measure consumer tastes. If there

exists good for which a researcher is confident that consumer tastes did not change, the assumption of a constant

taste parameter for that good is one such normalization. In the absence of an obvious candidate for such a good

in our barcode data, we assume that the geometric mean of the consumer taste parameters is constant across

common varieties:

ϕ̃t = ∏
k∈Ω∗t

(ϕkt)
1

N∗t = ∏
k∈Ω∗t

(ϕkt−1)
1

N∗t = ϕ̃t−1, (7)

where we use a tilde above a variable to denote a geometric mean across common varieties; N∗t = |Ω∗t | denotes

the number of these common varieties.

Our assumption (7) is consistent with the assumption that the log demand shocks are mean zero in the

estimation of the demand system. We examine the robustness of our results to alternative normalizations using

the class of generalized means below. Taking geometric means across common varieties in equation (6), and

using our assumption (7), we obtain our exact CES price index:

ΦCUPI
t =

Pt

Pt−1
=

(
λt

λt−1

) 1
σ−1

Φ∗CCV
t , (8)

Φ∗CCV
t =

P∗t
P∗t−1

=
p̃t

p̃t−1

(
s̃∗t

s̃∗t−1

) 1
σ−1

. (9)

We refer to this exact price index (ΦCUPI
t ) as the CES unified price index (CUPI), because our approach

treats demand shocks in the same way in both the demand system and the unit expenditure function. This exact
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price index has an intuitive interpretation. The first term ((λt/λt−1)
1

σ−1 ) on the right-hand side of equation (8)

is the standard Feenstra (1994) variety correction term, which takes account of the entry and exit of varieties.

If entering varieties are more attractive than exiting varieties (in the sense of having lower taste-adjusted prices

pkt/ϕkt), the share of common varieties in total expenditure will be smaller in period t than in period t − 1

(λt/λt−1 < 1), which reduces the cost of living (since σ > 1).

The second term (Φ∗CCG
t = P∗t /P∗t−1) on the right-hand side of equation (8) is our new CES exact price

index for common varieties (CCV), which itself has two components, as shown in equation (9). The first

component (p̃t/ p̃t−1) is the geometric mean of price relatives for common varieties, and is none other than a

“Jevons” index, which serves as the basis for the lower level of the U.S. Consumer Price Index. Indeed, in the

special case in which varieties are perfect substitutes (σ → ∞), the CCV collapses to this Jevons index, since

the exponent on the expenditure share term in equation (9) converges to zero as σ→ ∞.

The second component (
(
s̃∗t /s̃∗t−1

)1/(σ−1)) is novel and depends on the geometric mean of relative expen-

diture shares for common varieties in the two time periods. This second component captures changes in the

degree of heterogeneity in taste-adjusted prices across common varieties and moves with the average of the log

expenditure shares in the two time periods.4 Critically, as the expenditure shares of common varieties become

more uneven, the mean of the log expenditure shares falls, because the log function is concave. Therefore, this

second term becomes smaller if taste-adjusted prices, and hence expenditure shares, become more dispersed

across common varieties. The intuition is that consumers value dispersion in taste-adjusted prices across vari-

eties if these varieties are substitutes (σ > 1). The reason is that they can substitute away from varieties with

high taste-adjusted prices and towards varieties with low taste-adjusted prices.

If all taste-adjusted prices (pkt/ϕkt) are constant, the log change in the cost of living for common vari-

eties in equation (9) is necessarily zero. However, even if observed prices (pkt) are constant, the cost of living

for common varieties can change with movements in taste-adjusted prices, because the unit expenditure func-

tion depends on taste-adjusted rather than observed prices. Nevertheless, our normalization (7) rules out a

pure change in consumer tastes, in which tastes for all common varieties are scaled by the same proportion.

Therefore, the change in the cost of living depends on movements in prices and relative consumer tastes.

II.D. Demand System Inversion

We now show that the CUPI implicitly inverts the CES demand system (5) to substitute out for unobserved

changes in tastes (ϕkt/ϕkt−1) in terms of observed changes in prices (pkt/pkt−1) and common variety expen-

diture shares (s∗kt/s∗kt−1). We use this result in later sections to generalize our approach to other invertible

demand systems, including nested, mixed and non-homothetic CES, logit and mixed logit, translog and AIDS

preferences.

In particular, under our baseline assumption of CES preferences, the change in the cost of living for com-

mon varieties (P∗t /P∗t−1) in equation (9) can be written in terms of common variety expenditure shares and

taste-adjusted prices as follows:

4Our unified price index (8) differs from the expression for the CES price index in Hottman et al. (2016), which did not distinguish
entering and exiting varieties from common varieties and captured the dispersion of sales across common varieties using a different
term.
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ln
(

P∗t
P∗t−1

)
= ∑

k∈Ω∗t

ω∗kt ln
(

pkt/ϕkt

pkt−1/ϕkt−1

)
, (10)

where the weights ω∗kt are the logarithmic mean of common variety expenditure shares (s∗kt) in periods t and

t− 1 and sum to one:

ω∗kt ≡
s∗kt−s∗kt−1

ln s∗kt−ln s∗kt−1

∑
`∈Ω∗t

s∗`t−s∗`t−1
ln s∗`t−ln s∗`t−1

, ∑
k∈Ω∗t

ω∗kt = 1, (11)

and the derivation is reported in Section A.2 of the online appendix.5

This expression for the change in the cost of living in equation (10) is a generalization of the Sato-Vartia

price index, which corresponds to the special case in which tastes are time invariant for each common variety

(ϕkt/ϕkt−1 = 1 for all k ∈ Ω∗t ). The challenge in implementing equation (10) empirically is that it depends

on taste-adjusted prices (pkt/ϕkt), whereas only unadjusted prices are observed in the data (pkt). To overcome

this challenge, we invert the CES demand system to express the unobserved time-varying taste parameter (ϕkt)

in terms of observed prices (pkt) and common variety expenditure shares (s∗kt). Dividing the common variety

expenditure share (5) by its geometric mean across common varieties, taking logarithms and differencing over

time, we obtain the following closed-form expression for the log change in the taste parameter for each common

variety k ∈ Ω∗t :

ln
(

ϕkt

ϕkt−1

)
= ln

(
pkt/ p̃t

pkt−1/ p̃t−1

)
+

1
σ− 1

ln

(
s∗kt/s̃∗t

s∗kt−1/s̃∗t−1

)
, (12)

where we have used our normalization that the geometric mean of the taste parameters across common varieties

is constant: ϕ̃t = ϕ̃t−1.

Substituting this closed-form expression for the taste shocks (12) into the change in the cost of living for

common varieties in equation (10), we obtain our exact CES common variety price index (CCV) in equation

(9), as shown in Section A.2 of the online appendix. This alternative derivation of the CCV highlights the role

of the inversion of the demand system in deriving our exact price index. A sufficient condition for the demand

system to be invertible in this way is that it satisfies the conditions for “connected substitutes” in Berry, Gandhi

and Haile (2013). These conditions rule out the possibility that some varieties are substitutes while others are

complements. Our assumptions that demand is CES and varieties are substitutes (σ > 1) ensure that “connected

substitutes” is satisfied.

II.E. Taste-Shock Bias

We now compare our CCV to existing exact CES price indexes. Both our CCV and the Sato-Vartia index use

the observed expenditure shares. Our CCV assumes that movements in these expenditure shares reflect changes

in both relative prices and relative tastes. Therefore, we adjust the observed price movements for the changes in

5To derive this equivalent expression for the exact CES price index for common varieties, take the ratio of the com-
mon goods expenditure shares in the two time periods (s∗kt/s∗kt−1) , take logarithms, and rearrange terms to obtain:[
ln
(

P∗t
P∗t−1

)
− ln

(
pkt/ϕkt

pkt−1/ϕkt−1

)]
/ ln

(
s∗kt

s∗kt−1

)
= 1

σ−1 . Multiply both sides of this equation by s∗kt − s∗kt−1, sum across all common
varieties, and re-arrange terms to obtain equation (10), as shown in Section A.2 of the online appendix.
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relative tastes implied by the demand system when we compute the change in the cost of living. In contrast, the

Sato-Vartia index assumes that tastes for each common variety are time-invariant, and interprets the observed

movements in the expenditure shares as reflecting only changes in relative prices. Hence, the Sato-Vartia index

uses the observed prices without making any adjustment for changes in relative tastes in computing the change

in the cost of living. We show below that this assumption that relative prices are the sole source of movements

in expenditure shares is hard to reconcile with empirical estimates of the demand system. In the remainder

of this section, we demonstrate that this assumption introduces a taste-shock bias into the measurement of the

cost of living, because the Sato-Vartia index uses initial and final-period expenditure shares (where the final-

period shares are affected by demand shocks), while also using observed prices (without adjusting for demand

shocks).

From equations (9) and (10), the Sato-Vartia index equals the true exact CES common variety price index

(CCV) plus an additional term in consumer taste shocks that we refer to as the taste-shock bias:

ln Φ∗CCV
t = ln Φ∗SV

t −
[

∑
k∈Ω∗t

ω∗kt ln
(

ϕkt

ϕkt−1

)]
︸ ︷︷ ︸

taste-shock bias

, (13)

where the Sato-Vartia index (ln Φ∗SV
t ) is the special case of equation (10) in which ϕkt/ϕkt−1 = 1.

Therefore, the Sato-Vartia index is only unbiased if the taste shocks (ln (ϕkt/ϕkt−1)) are orthogonal to

the expenditure-share weights (ω∗kt); it is upward-biased if they are positively correlated with these weights;

and it is downward-biased if they are negatively correlated with these weights. In principle, either a positive

or negative correlation between the taste shocks (ln (ϕkt/ϕkt−1)) and the expenditure-share weights (ω∗kt)

is possible, depending on the underlying correlation between taste and price shocks. However, there is a

mechanical force for a positive correlation, because the expenditure-share weights themselves are functions of

the taste shocks. In particular, a positive taste shock for a variety mechanically increases the expenditure-share

weight for that variety and reduces the expenditure-share weight for all other varieties:

dω∗kt
dϕkt

ϕkt

ω∗kt
> 0,

dω∗`t
dϕkt

ϕkt

ω∗`t
< 0, ∀` 6= k, (14)

as shown in Section A.3 of the online appendix.

The intuition for this taste-shock bias is as follows. The Sato-Vartia index fails to take into account that

increases in tastes are like reductions in prices and decrease the cost of living, while reductions in tastes are

analogous to increases in prices and increase the cost of living. If the weights placed on varieties in the Sato-

Vartia index were uncorrelated with changes in tastes, these measurement errors would average out across

varieties. However, other things equal, varieties experiencing increases in tastes have systematically higher

weights in the Sato-Vartia index than varieties experiencing reduction in tastes, because an increase in the

relative taste for a variety raises its expenditure share and hence its weight in the Sato-Vartia index. Therefore,

the errors from ignoring increases in tastes (which reduce the true cost of living below the measured cost of

living) are weighted more highly than the errors from ignoring reductions in tastes (which raise the true cost of

living above the measured cost of living), thereby introducing an upward bias in the Sato-Vartia index. Even
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though our use of barcode data ensures that changes in quality within common varieties are unlikely (because

changes in product attributes lead to the introduction of a new barcode), this taste-shock bias is analogous to the

well-known “quality bias” from neglecting changes in product quality, because such changes in quality would

enter the unit expenditure function in the same way as changes in tastes.

Another metric for the tension inherent in the Sato-Vartia index’s assumption that movements in expenditure

shares reflect only changes in relative prices is to note that under this assumption the elasticity of substitution

can be recovered from the observed data on prices and expenditure shares with no estimation. Indeed, the

model is overidentified, with an infinite number of approaches to recovering the elasticity of substitution, each

of which uses different weights for each common variety, as shown in Section A.4 of the online appendix. If

tastes for all common varieties are indeed constant (including no changes in preferences, quality, measurement

error or specification error), all of these approaches will recover the same elasticity of substitution. However,

if tastes for some common variety change over time, but a researcher falsely assumes time-invariant tastes for

all common varieties, these alternative approaches will return different values for the elasticity of substitution,

depending on which weights are used. We use this metric below to provide evidence on the empirical validity

of the assumption of time-invariant tastes for all common varieties.

From equation (8), the overall change in the cost of living equals the Feenstra (1994) variety correction for

entry/exit plus the change in the cost of living for common varieties. Therefore, if the Sato-Vartia index is used

to measure the change in the cost of living for common varieties, this translates into a bias in the measurement

of the overall cost of living. In contrast, using our CCV to measure the change in the cost of living for common

varieties eliminates this bias in the measurement of the overall cost of living.

II.F. Robustness to Alternative Normalizations

Although our normalization (7) is consistent with the assumption that the log demand shocks are mean zero in

the estimation of the demand system, it is not the only possible normalization. Therefore, we report robustness

tests for a range of alternative normalizations, in which we rule out a pure change in consumer tastes by

requiring that a generalized mean of order-r of the taste parameters is constant:

[
1

N∗t
∑

k∈Ω∗t

ϕr
kt

] 1
r

=

[
1

N∗t
∑

k∈Ω∗t

ϕr
kt

] 1
r

. (15)

Using equations (3) and (5), and taking a generalized mean across common varieties, we obtain the follow-

ing expression for the change in the cost of living between periods t and t− 1:

Pt

Pt−1
=

(
λt

λt−1

) 1
σ−1 P∗t

P∗t−1
=

(
λt

λt−1

) 1
σ−1

[
1

N∗t
∑k∈Ω∗t

pr
kt

(
s∗kt

) r
σ−1
] 1

r

[
1

N∗t
∑k∈Ω∗t

pr
kt−1

(
s∗kt−1

) r
σ−1
] 1

r
, (16)

as shown in Section A.5 of the online appendix. Comparing this expression with our CUPI in equation (8),

the variety correction term is unchanged, and the common variety price index takes a similar form as the exact

price index in the quadratic mean of order-r expenditure function in Diewert (1976).
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As we vary the value of r we place different weights on low versus high values for consumer tastes, with

negative values of r placing greater weight on low values for consumer tastes (as r → −∞ we obtain the

minimum value) and high values of r giving more weight to high values for consumer tastes (as r → ∞ we

obtain the maximum value). Our CUPI corresponds to the limiting case of equation (16) in which r → 0. We

show in Section V.E. that we find quantitatively similar measured changes in the cost of living over time using

generalized means ranging from the harmonic mean (r = −1), through the geometric mean (r = 0) and the

arithmetic mean (r = 1), to the quadratic mean (r = 2).

III. Extensions and Generalizations

In this section, we consider a number of extensions and generalizations of our approach, including non-

homothetic CES (indirectly additive), nested CES, mixed CES, logit, mixed logit, translog and AIDS pref-

erences. We show that our main insight that the demand system can be inverted to express unobserved relative

taste shocks for individual varieties in terms of observed prices and expenditure shares generalizes to each of

these specifications. Therefore, in each case, we can use this demand system inversion to derive an exact price

index in terms of only prices and expenditure shares, and existing price indexes that assume time-invariant

relative tastes for each variety are subject to a taste-shock bias.

III.A. Non-homothetic CES

We now generalize our approach to allow for non-homotheticities using the non-separable class of CES func-

tions in Sato (1975), Comin, Lashkari and Mestieri (2015), and Matsuyama (2019), which satisfy implicit

additivity in Hanoch (1975). Although this specification is more restrictive than the flexible specifications

of non-homotheticities in Fajgelbaum and Khandelwal (2016) and Atkin, Faber, Fally and Gonzalez-Navarro

(2018), it allows us to show that our approach does not depend on assuming homotheticity, and we analyze the

more flexible functional forms of translog and AIDS preferences in later sections below.

Suppose that we observe data on households indexed by h ∈ {1, . . . , H} that differ in income and total

expenditure (Eh
t ). The non-homothetic CES consumption index for household h (Ch

t ) is defined by the following

implicit function:

∑
k∈Ωt

(
ϕh

ktc
h
kt(

Ch
t
)(εk−σ)/(1−σ)

) σ−1
σ

= 1, (17)

where ch
kt denotes household h’s consumption of variety k at time t; ϕh

kt is household h’s taste parameter for

variety k at time t; σ is the constant elasticity of substitution between varieties; εk is the constant elasticity

of consumption of variety k with respect to the consumption index (Ch
t ) that allows for non-homotheticity.

Assuming that varieties are substitutes (σ > 1), we require εk < σ for the consumption index (17) to be globally

monotonically increasing and quasi-concave, and hence to correspond to a well-defined utility function. Our

baseline homothetic CES specification from Section II. above corresponds to the special case of equation (17)

in which εk = 1 for all k ∈ Ωt.
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Solving the household’s expenditure minimization problem, we obtain the following expressions for the

price index (Ph
t ) dual to the consumption index (Ch

t ) and the expenditure share for an individual variety k (sh
kt):

Ph
t =

[
∑

k∈Ωt

(
pkt/ϕh

kt

)1−σ (
Ch

t

)εk−1
] 1

1−σ

, (18)

sh
kt =

(
pkt/ϕh

kt

)1−σ (Ch
t
)εk−1

∑`∈Ωt

(
ph
`t/ϕh

`t

)1−σ (Ch
t
)ε`−1 =

(
pkt/ϕh

kt

)1−σ (Eh
t /Ph

t
)εk−1(

Ph
t
)1−σ

, (19)

where we assume that all households h face the same price for a given variety (pkt) and the derivation for all

results in this section is reported in Section A.6 of the online appendix.

As for the homothetic case in the previous section, the price index (18) depends on taste-adjusted prices

(pkt/ϕh
kt) rather than observed prices (pkt). One challenge relative to the homothetic CES case is that the

overall price index (Ph
t ) enters the numerator of the expenditure share in equation (19). To overcome this

challenge, we work with the share of each variety in overall expenditure (sh
kt) rather than the common variety

expenditure share (sh∗
kt in our earlier notation). In particular, rearranging this overall expenditure share (19),

and taking ratios between periods t and t− 1, we obtain the following expression for the change in the cost of

living, which must hold for each common variety that is supplied in both periods:

Ph
t

Ph
t−1

=
pkt/ϕh

kt

pkt−1/ϕh
kt−1

(
Eh

t /Ph
t

Eh
t−1/Ph

t−1

) εk−1
1−σ
(

sh
kt

sh
kt−1

) 1
σ−1

, k ∈ Ω∗t . (20)

Using our normalization that the geometric mean of consumer tastes across common varieties for household

h is constant, and taking the geometric mean across common varieties in equation (20), we obtain the following

generalization of our CES unified price index to the non-homothetic case for each household h:

Ph
t

Ph
t−1

=

(
p̃t

p̃t−1

) 1
1+ϑ

(
s̃h

t

s̃h
t−1

) 1
(σ−1)(1+ϑ)

(
Eh

t

Eh
t−1

) ϑ
1+ϑ

, (21)

ϑ ≡ 1
N∗t

∑
k∈Ω∗t

εk − 1
1− σ

,

where the tilde above a variable denotes a geometric mean across common varieties; the derived parameter ϑ

captures the average across the common varieties of the elasticity of expenditure with respect to the consump-

tion index (εk) relative to the elasticity of substitution (σ); and the change in the household’s cost of living

(Ph
t /Ph

t−1) now depends directly on the change in income (and hence total expenditure) for parameter values

for which ϑ 6= 0.

III.B. Nested CES

In our baseline specification in Section II., we focus on a single CES tier of utility, which can be interpreted as

a single sector consisting of many varieties. In this section, we show that our analysis generalizes to a nested

CES specification with multiple tiers of utility, by adding an additional upper tier of utility that is defined across

sectors. This nested demand structure introduces additional flexibility into the substitution patterns between
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varieties, depending on whether those varieties are in the same or different nests. For simplicity, we return

to our baseline specification of homothetic CES. In particular, we assume that the aggregate unit expenditure

function is defined across sectors g ∈ ΩG as follows:

Pt =

 ∑
g∈ΩG

(
PG

gt

ϕG
gt

)1−σG
1

1−σG

, σG > 1, (22)

where σG is the elasticity of substitution across sectors; PG
gt is the unit expenditure function for each sector,

which is defined across varieties within each sector; ϕG
gt is the taste parameter for each sector; we assume for

simplicity that the set of sectors is constant over time and denote the number of sectors by NG =
∣∣ΩG

∣∣; and

the derivations for this section of the paper are reported in Section A.7 of the online appendix.

All of the results for entry and exit and the exact CES price index with time-varying taste shocks from

Section II. continue to hold for this nested demand structure. We use analogous normalizations for the taste

parameters as above: we normalize the geometric mean of sector tastes (ϕG
gt) to be constant across sectors and

the geometric mean of variety tastes (ϕK
kt) to be constant across common varieties within sectors. As the log of

the price index for each nest of utility is the mean of the log prices within that nest, and the mean is a linear

operator, we can apply this operator recursively across nests of utility. Using this property, the log aggregate

price index can be expressed as follows:

ln
(

Pt
Pt−1

)
=

1
NG ∑

g∈ΩG

1
NK∗

gt
∑

k∈ΩK∗
gt

ln

(
pK

kt
pK

kt−1

)
+

1
NG ∑

g∈ΩG

1
σK

g − 1
1

NK∗
gt

∑
k∈ΩK∗

gt

ln

(
sK∗

gkt

sK∗
gkt−1

)
(23)

+
1

NG ∑
g∈ΩG

1
σK

g − 1
ln

(
λK

gt

λK
gt−1

)
+

1
σG − 1

1
NG ∑

g∈ΩG

ln

(
sG

gt

sG
gt−1

)
,

where we have used our normalizations that
(
1/NG)∑g∈ΩG ln

(
ϕG

gt/ϕG
gt−1

)
= 0 and(

1/NK∗
gt

)
∑k∈ΩK∗

gt
ln
(

ϕK
kt/ϕK

kt−1

)
= 0; NK∗

gt is the number of common varieties for each sector g; sK∗
gkt is the

share of an individual common variety k in expenditure on sector g at time t;
(

1/
(

σK
g − 1

))
ln
(

λK
gt/λK

gt−1

)
is the variety correction term for the entry and exit of varieties within sector g; and sG

gt is the share of sector g

in aggregate expenditure at time t.

Although, for simplicity, we focus here on two nests of utility, this procedure can be extended for any

number of nests of utility, from the highest to the lowest. Conventional measures of the overall cost of living

typically aggregate categories using expenditure-share weights. Therefore, we assume in our empirical analysis

below that the upper tier of utility across sectors is Cobb-Douglas (σG = 1), and estimate the elasticity of

substitution across varieties within sectors (σK
g ) separately for each sector.

III.C. Mixed CES

The non-homothetic specification in Section III.A. assumes that the only source of heterogeneity across con-

sumers is differences in income and that all consumers have the same elasticity of substitution across varieties.

In this section, we introduce a mixed CES specification that allows both the elasticity of substitution and the
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taste parameters to vary in an unrestricted way across groups.6 In particular, we consider a setting with multiple

groups of heterogeneous consumers indexed by h ∈ {1, . . . , H}, in which the unit expenditure function (Ph
t )

and expenditure share (sh
kt) for a consumer from group h are:

Ph
t =

 ∑
k∈Ωt

(
pkt

ϕh
kt

)1−σh
1

1−σh

, (24)

sh
kt =

(
pkt/ϕh

kt

)1−σh

∑`∈Ωt

(
p`t/ϕh

`t

)1−σh =

(
pkt/ϕh

kt

)1−σh

(
Ph

t
)1−σh , (25)

where sh
kt is a share of variety k in the expenditure of group h at time t; σh is the elasticity of substitution across

varieties for group h; ϕh
kt denotes consumer tastes for group h; and the derivation for all results in this section

is reported in Section A.8 of the online appendix. We assume for simplicity that all groups face the same prices

(pkt) and set of varieties available (Ωt). Nevertheless, we allow for the possibility that some groups do not

consume some varieties, which we interpret as corresponding to the limiting case in which the taste parameter

converges to zero for that group and variety (lim ϕh
kt → 0 for some k and h).

This specification relaxes the independence of irrelevant alternatives (IIA) property of CES, because the

differences in preferences across groups imply that the relative expenditure shares of two varieties in two

different markets depend on the relative size of the groups in those markets. This specification also relaxes

the symmetric cross-substitution properties of CES, because the elasticity of expenditure on one variety with

respect to a change in the price of another variety in two different markets also depends on group composition:

∂xkt

∂p`t

p`t

xkt
=

1
skt

H

∑
h=1

f h
t

(
σh − 1

)
sh

kts
h
`t, (26)

where skt is the share of variety k in total expenditure; sh
kt is the share of variety k in total expenditure for group

h; and f h
t is the share of group h in total expenditure.

All of our results from our baseline specification in Section II. now hold for each group of consumers

separately.7 Following the same analysis as in Section II.D. above, the exact CES unified price index for each

group, allowing for entry and exit and taste shocks, takes the same form as in equation (8):

ln ΦhCUPI
t =

1
σh − 1

ln

(
λh

t

λh
t−1

)
︸ ︷︷ ︸

Variety Adjustment

+
1

N∗t
∑

k∈Ω∗t

ln
(

pkt

pkt−1

)
+

1
σh − 1

1
N∗t

∑
k∈Ω∗t

ln

(
sh∗

kt

sh∗
kt−1

)
︸ ︷︷ ︸

Common-Variety Price Index

, (27)

where
(
1/
(
σh − 1

))
ln
(
λh

t /λh
t−1

)
is the variety correction term for the entry and exit of varieties for group

h; sh∗
kt is the share of an individual common variety k in all expenditure on common varieties for group h; and

we have used our normalization that the geometric mean of consumer tastes for each group is constant.

6This mixed CES specification is used, for example, in Adao, Costinot and Rodriguez-Clare (2017) and is different from but related
to the random coefficients model of Berry, Levinsohn and Pakes (1995).

7In order to aggregate across groups, we would need to impose additional assumptions in the form of a social welfare function that
specifies how to weight the preferences of each group.
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To implement this mixed CES specification, we estimate the elasticities of substitution (σh
g ) for each group

separately using the data on prices and expenditure shares for that group. In Section VI. below, we report

such a robustness test for high- and low-income households, and compare both the estimated elasticities of

substitution (σh) and changes in the cost of living for each group (Ph
t /Ph

t−1).

III.D. Logit

A well-known result in the discrete choice literature is that CES preferences can be derived as the aggregation

of the choices of individual consumers with extreme-value-distributed idiosyncratic preferences, as shown in

Anderson, de Palma, and Thisse (1992) and Train (2009). In this section, we briefly use this result to show

that our unified price index for CES preferences also can be applied for logit preferences, as widely used in

applied microeconometric research. Following McFadden (1974), we suppose that the utility of an individual

consumer i who consumes cik units of variety k at time t is given by:

Uit = ln ϕkt + ln cikt + zikt, (28)

where ϕkt captures the component of consumer tastes for each variety that is common across consumers; zikt

captures idiosyncratic consumer tastes for each variety that are drawn from an independent Type-I Extreme

Value distribution, G (z) = e−e(−z/ν+κ)
, where ν is the shape parameter of the extreme value distribution and

κ ≈ 0.577 is the Euler-Mascheroni constant.

Consumers are assumed to have the same expenditure level Et and choose their preferred variety given the

realizations for their idiosyncratic tastes. Using the properties of the extreme value distribution, we show in

Section A.9 of the online appendix that the expenditure share for each variety and the consumer’s expected

utility take the same form as in our baseline CES specification in Section II. of the paper, where 1/ν = σ− 1.

Therefore, all our results can be applied for the logit model. Additionally, in the same way that our baseline

CES specification can be generalized to mixed CES (as in Section III.C. above), this baseline logit model can

be generalized to a mixed logit, as in McFadden and Train (2000).

III.E. Flexible Functional Forms

Finally, we show that our approach also holds for the flexible functional forms of homothetic translog pref-

erences and the non-homothetic almost ideal demand system (AIDS). In this section, we briefly review the

homothetic translog case. In Section A.10 of the online appendix, we report the derivations for both the homo-

thetic translog and non-homothetic AIDS specifications.

Homothetic translog preferences provide an arbitrarily close local approximation to any continuous and

twice-differentiable homothetic utility function. In particular, we consider the following unit expenditure func-

tion that is defined over the price (pkt) and taste parameter (ϕkt) for a constant set of varieties k ∈ Ω with

number of elements N = |Ω|:

ln Pt = ln α0 + ∑
k∈Ω

αk ln
(

pkt

ϕkt

)
+

1
2 ∑

k∈Ω
∑
`∈Ω

βk` ln
(

pkt

ϕkt

)
ln
(

p`t

ϕ`t

)
, (29)
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where the parameters βkl control substitution patterns between varieties; symmetry between varieties requires

βk` = β`k; symmetry and homotheticity together imply ∑k∈Ω αk = 1 and ∑k∈Ω βk` = ∑`∈Ω β`k = 0.

As for CES preferences in equation (10), the change in the cost of living can be written as an expenditure-

share-weighted average of the change in taste-adjusted prices (pkt/ϕkt) for each variety:

ln ΦTR
t = ln

(
Pt

Pt−1

)
= ∑

k∈Ω

1
2
(skt + skt−1) ln

(
pkt

pkt−1

)
− ∑

k∈Ω

1
2
(skt + skt−1) ln

(
ϕkt

ϕkt−1

)
, (30)

where the weights for translog are the arithmetic mean of expenditure shares in the two time periods

((1/2) (skt + skt−1)) instead of the logarithmic mean for CES (equation (11)).

This expression for the change in the cost of living (30) is a generalization of the Törnqvist index (ln ΦTO
t ),

which corresponds to the special case of equation (30) in which taste is assumed to be constant for all varieties

((ϕkt/ϕkt−1) = 1 for all k ∈ Ω). Therefore, the Törnqvist index for translog is subject to a similar taste-shock

bias as the Sato-Vartia index for CES, except that the taste shock for each variety is weighted by the arithmetic

mean of expenditure shares in the two time periods instead of the logarithmic mean. The source of this bias

is again the failure to take into account that an increase in taste for a variety is analogous to a fall in its price,

which induces a systematic overstatement of the increase in the cost of living, because consumers substitute

towards varieties that become more desirable. Once again, we have the result that a positive taste shift lowers

the taste-adjusted price for a variety and raises its expenditure share, while a negative one has the reverse effect.

Since the Törnqvist index also does not take the association between taste shifts and expenditure shares into

account, it underweights reductions in relative taste-adjusted prices and overweights increases in taste-adjusted

prices, just like the Sato-Vartia index.

Again, we overcome the challenge that consumer tastes are not observed in the data by inverting the demand

system to solve for tastes (ϕkt) as a function of the observed prices and expenditure shares (pkt, skt). Apply-

ing Shephard’s Lemma to the unit expenditure function, and differencing over time, we obtain the following

expression for the change in the expenditure share for each variety:

∆skt = ∑
`∈Ω

βk` [∆ ln (p`t)− ∆ ln (ϕ`t)] . (31)

We assume that each variety’s expenditure share is decreasing in its own taste-adjusted price (βkk < 0), and

increasing in the taste-adjusted price of other varieties (βk` > 0 for ` 6= k), which ensures that this demand

system satisfies the “connected substitutes” conditions from Berry, Gandhi and Haile (2013).

We solve for the unobserved taste shocks (∆ ln (ϕ`t)) by inverting the system of expenditure shares in

equation (31), as shown in Section A.10 of the online appendix. The demand system (31) consists of a system of

equations for the change in the expenditure shares (∆skt) of the N varieties that is linear in the change in the log

price (∆ ln pkt) and log taste parameter (∆ ln ϕkt) for each variety. These changes in expenditure shares must

sum to zero across varieties, because the expenditure shares sum to one. Furthermore, under our assumptions

of symmetry and homotheticity, the rows and columns of the symmetric matrix formed by the coefficients β

for all pairs of varieties must each sum to zero. Therefore, without loss of generality, we can omit the equation

for one variety. We can nevertheless recover the taste shock for all varieties (including the omitted one) using

our normalization that the geometric mean of tastes is constant (which implies (1/N)∑k∈Ω ∆ ln ϕkt = 0), as
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shown in Section A.10 of the online appendix. We thus obtain the unobserved taste shock for each variety in

terms of observed prices and expenditure shares:

∆ ln ϕkt = S−1
kt (∆st, ∆ ln pt, β) . (32)

.

Substituting for these unobserved taste shocks in equation (30), we obtain the following exact price index

in terms of prices and expenditure shares:

ln ΦTR
t = ∑

k∈Ω

1
2
(skt + skt−1) ln

(
pkt

pkt−1

)
− ∑

k∈Ω

1
2
(skt + skt−1) S−1

kt (∆st, ∆ ln pt, β) , (33)

which corresponds to the analogous common variety price index for translog preferences as our CCV for CES

preferences in equation (9) above.

Therefore, our main insight that the demand system can be unified with the unit expenditure function to

construct an exact price index that allows for time-varying taste shocks for individual varieties is not specific to

CES, but also holds for flexible functional forms. Furthermore, the taste-shock bias is again present, because

a conventional price index that assumes time-variant tastes interprets all movements in expenditure shares as

reflecting changes in prices, and hence does not take into account that these movements in expenditure shares

are also influenced by the time-varying demand residual.

IV. Data

Our data source is the Nielsen Homescan Consumer Panel,8 which contains sales and purchase quantity data for

millions of barcodes bought between 2004 and 2014. Nielsen collects its barcode data by providing handheld

scanners to on average 55,000 households a year to scan each good purchased that has a barcode.9 Prices

are either downloaded from the store in which the barcode was purchased or hand entered, and the household

records any deals used that may affect the price. Measuring varieties using barcodes has a number of advantages

for the purpose of our analysis. First, product quality does not vary within a barcode, because any change in

observable product characteristics results in the introduction of a new barcode. Barcodes are inexpensive

to purchase and manufacturers are discouraged from assigning the same barcode to more than one product

because it can create problems for store inventory systems that inform stores about how much of each product

is available. Thus, barcodes are typically unique product identifiers and changes in physical attributes (such

as product quality) manifest themselves through the creation (and destruction) of barcodes, not changes in the

characteristics of existing barcodes.

In the raw Nielsen data, some households with particular demographic characteristics are more likely to

be sampled by design. In order to construct national or regional expenditure shares and purchase quantities

that represent the populations in these regions, Nielsen provides sampling weights that enable us to re-weight

8Our results are calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center
at The University of Chicago Booth School of Business. Further information on availability and access to the data is available at
http://research.chicagobooth.edu/nielsen

9The data for 2004 through 2006 come from a sample of 40,000 households, and the data for 2007 through 2014 come from a
sample of 60,000 households.
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the data so that the average expenditures and prices are representative of the actual demography in each re-

gion rather than the Nielsen sample. We use these weights to construct a demographically-balanced sample of

households in 42 cities in the United States. The set of goods included corresponds to close to the universe

of barcoded goods available in grocery, mass-merchandise, and drug stores, representing around a third of all

goods categories included in the CPI. For our baseline CES specification, we collapse both the household di-

mension in the data and the weekly purchase frequency to construct a national quarterly database by barcode

on the total value sold, total quantity sold, and average price. In a robustness test for our mixed CES specifi-

cation, we construct national datasets on total value sold, total quantity sold, and average price for high- and

low-income households separately. We define low-income households as those with incomes below the median

income bracket in our Nielsen data ($50-59,000 in all but three years) and classify the remaining households

as high-income.

Nielsen organizes barcoded goods (varieties) into product groups (sectors), which are based on where they

appear in stores. We dropped “magnet data,” which corresponds to products that do not use standard barcodes

(e.g., non-branded fruits, vegetables, meats, and in-store baked goods), but kept barcoded goods within these

sectors (e.g., Perdue Chicken Breasts, Dole Baby Spinach, etc.). The 5 largest of our 104 sectors in order of

expenditure are pet food, carbonated beverages, paper products, bread and baked goods, and candy. We report

a full list of the sectors and summary statistics for each sector in the online appendix. Output units are common

within a sector: typically volume, weight, area, length, or counts. Importantly, we deflate by the number of

units in the barcode, so prices are expressed in price per unit (e.g., price per ounce). When the units are in

counts, we also deflate by the number of barcoded goods in a multipack, so for instance, we would measure

price per battery for batteries sold in multipacks. Although about two thirds of these barcoded items correspond

to food items, the data also contain significant amounts of information about nonfood items like medications,

housewares, detergents, and electronics.

In choosing the time frequency with which to use the barcode data, we face a trade-off. On the one hand,

as we work with higher frequency data, we are closer to observing actual prices paid for barcodes as opposed

to averages of prices. Thus, high-frequency data has the advantage of allowing for a substantial amount of

heterogeneity in price and consumption data. On the other hand, the downside is that the assumption that the

total quantity purchased equals the total quantity consumed breaks down in very high-frequency data (e.g.,

daily or weekly) because households do not consume every item on the same day or even week they purchase

it. Thus, the choice of data frequency requires a tradeoff between choosing a sufficiently high frequency that

keeps us from averaging out most of the price variation, and a low enough frequency that enables us to be

reasonably confident that purchase and consumption quantities are close.10 We resolve this trade-off using a

quarterly frequency in our baseline specification (though we find very similar results in a robustness test using

an annual frequency). Four-quarter differences were then computed by comparing values for the fourth quarter

of each year relative to the fourth quarter of the previous year.

10Even so, Homescan data can sometimes contain entry errors. To mitigate this concern, we dropped purchases by households that
reported paying more than three times or less than one third the median price for a barcode in a quarter or who reported buying twenty-
five or more times the median quantity purchased by households buying at least one unit of the barcode. We also winsorized the data
by dropping observations whose percentage change in price or value were in the top or bottom one percent.
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Our baseline sample of barcodes is an unbalanced panel that includes both barcodes that survive throughout

our entire sample period and those that enter or exit at some point during the sample period. When we construct

our price indexes, we need to define the subset of varieties (barcodes) that are common across periods, which

requires jointly deciding on the number of years (four-quarter differences) over which the common set is defined

and when a variety counts as entering and exiting this common set. For the number of years, we consider a

range of definitions of the set of common varieties that require a good to be present (a) only in years t− 1 and

t, (b) for the entire sample period, (c) in years t− 1 and t and an intermediate number of years that is less than

the full sample period. When we examine the sensitivity of our results across these alternative definitions in

Section V.E., we find a stable pattern of results across these alternative definitions of common varieties. We

choose as our baseline definition of common varieties the set of varieties present in both years t− 1 and t and

more than a total of six years.

For determining entry and exit into the set of common varieties, a variety can appear at the beginning or

end of the fourth quarter of either years t− 1 or t, which affects measured rates of growth over the four-quarter

difference. More generally, varieties can experience dramatic increases in sales in the first few quarters as they

are rolled out into stores or rapid declines in sales in the last few quarters of their life as stores sell out and

deplete their inventories. These features can make it appear as if consumer tastes for a common variety are

changing rapidly when in fact they are not. To make sure that these entry and exit events are not driving our

results, we also require that a variety must be available for three quarters before the fourth quarter of year t− 1

and for three quarters after the fourth quarter of year t to appear in the common set of varieties.

In Table I, we report summary statistics for our baseline sample including common, entering and exiting

varieties. For each variable, we first compute the time mean across years for a given sector. We next report

in the table the mean and standard deviation of these time means across sectors, as well as percentiles of their

distribution across sectors. As shown in the first row, the median number of price and quantity observations

(“Sector Sample Size”) is 47,747, with the sectors in the fifth percentile of observations only having just short

of 9,033 data points and those in the 95th percentile having over 151,930 observations. The median number

of barcodes per sector is just over 11,000, with 95 percent of these sectors having more than 1,700 unique

barcodes, and the largest five percent of them encompassing over 45,000 unique barcodes.

We find substantial entry and exit of barcodes, with the typical life of a barcode being only three to four

years. On average, 37 percent of all barcodes in a given year exit the sample in the following year, while 38

percent of barcodes sold in a year were not available in the previous year. In comparison, the net growth in the

number of barcodes is on average 3 percent across all sectors. These averages mask substantial heterogeneity

in innovation rates across sectors, with the average life of a cottage cheese barcode being 6.4 years, whereas

the average life of an electronics barcode is only 1.7 years. High rates of barcode turnover are reflected in

shares of common barcodes in total expenditure (λt and λt−1) of less than one, although these again vary

substantially across sectors from a low of 0.34 to a high of 0.99. Consistent with entering barcodes being more

numerous or more attractive to consumers than exiting barcodes, we find that common barcodes account for

a larger share of expenditure in t− 1 than in t (a value of λt/λt−1 of less than one). We also report means

and standard deviations for the log change in prices (∆ ln pkt) and expenditure shares (∆ ln skt), where these
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expenditure shares are defined as a share of expenditure within each sector. As apparent from the table, we

find that expenditure shares are substantially more variable than prices, which in our model is explained by a

combination of taste shocks and elastic demand.

V. Empirical Results

We now present our main empirical results. In Section V.A., we report our estimates of the elasticity of substi-

tution across barcodes within each of the sectors in our data. In Section V.B., we use these estimated elasticities

of substitution to invert the demand system and recover consumer tastes, and provide evidence on the properties

of our estimated consumer tastes. In Section V.C., we show that exact CES price indexes yield similar measures

of the change of the cost of living to superlative price indexes under the same assumptions of time-invariant

tastes and no entry/exit. In Section V.D., we implement our new exact CES unified price index that allows for

time-varying tastes for each variety. We show that abstracting from these taste shocks leads to a substantial

taste-shock bias in existing exact CES price indexes. In Section V.E., we report a joint specification test on our

assumptions of CES demand and a constant geometric mean for consumer tastes, and report a robustness test

using alternative normalizations for tastes.

V.A. Estimates of the Elasticity of Substitution

We estimate the elasticity of substitution across barcodes for each sector separately using the conventional

Feenstra (1994) estimator. We demonstrate the robustness of our results to alternative elasticities of substitution

using a grid search over the range of plausible values for the elasticity of substitution in Section VII. below. The

Feenstra (1994) estimator uses double-differences of the log common-variety expenditure share (5), where the

first difference is across time and the second difference is across barcodes within sectors. The demand elasticity

is separately identified from the supply elasticity using the assumption that the double-differenced demand and

supply shocks are orthogonal and heteroskedastic, as shown in Section A.11 of the online appendix. We follow

Broda and Weinstein (2006) in stacking these moment conditions for each barcode and estimating the elasticity

of substitution using the generalized method of moments (GMM).

In Table II, we report percentiles of the distribution of these estimates across the sectors. We find estimated

elasticities of substitution that range from 5.11 at the 5th percentile to 8.51 at the 95th percentile, with a median

elasticity of 6.48. These estimated elasticities are in line with those estimated in other studies using barcode

data and imply substantially more substitution between barcodes than implied by an elasticity of zero in the

conventional Laspeyres index or an elasticity of one implied by a conventional Jevons index using expenditure

share sampling weights. These differences are not only economically large but also statistically significant. We

comfortably reject the null hypothesis of an elasticity of substitution of one or zero at conventional levels of

statistical significance for all sectors. Therefore, these estimates suggest that the elasticities implicit in conven-

tional price indexes substantially understate the degree to which consumers can substitute between barcodes,

confirming the empirical relevance of the well-known substitution bias.

Finally, we now highlight the tension between combining a variety adjustment term based on the estimation
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of a CES demand system and a Sato-Vartia price index for continuing varieties. In particular, under the Sato-

Vartia index’s assumption of no taste shock for any continuing variety, we can directly solve for the elasticity

of substitution for each pair of time periods, as shown in equation (A.24) in Section A.4 of the online appendix.

If the Sato-Vartia index’s assumption were satisfied, we would expect the resulting estimates of the elasticity

of substitution to be stable across time periods. To examine the extent to which this is the case, we compute

this Sato-Vartia elasticity of substitution (σSV
gt ) for each four-quarter difference and sector. We expect these

estimates to vary by sector, so we compute the dispersion of these estimates relative to the sector mean, or(
σSV

gt − 1
T ∑t σSV

gt

)
, where T is the number of periods. In the absence of demand shocks, we expect this

number to be zero.

In Table III, we report the mean and median of 1
T ∑t σSV

gt in the first two columns and moments of the

distribution of
(

σSV
gt − 1

T ∑t σSV
gt

)
in the remaining columns. As apparent from the table, we find substantial

volatility in these Sato-Vartia elasticities of substitution. The median elasticity of substitution is -2.55, and

the mean elasticity is also negative, with a standard deviation of 196. Therefore, we find strong evidence

against the assumption of the Sato-Vartia index that movements in expenditure shares reflect only changes in

relative prices. In contrast, once we allow for time-varying tastes using the Feenstra (1994) estimator, we obtain

plausible estimated elasticities of substitution in our baseline specification above.

V.B. Properties of the Demand Residuals

Using our estimates of the elasticity of substitution (σ) for each sector, we invert the CES demand system to

solve for the time-varying demand residuals (ln ϕkt) for each variety, as shown in equation (12). As discussed

above, there are the two potential approaches that one can take with respect to these time-varying demand

residuals: (i) one can interpret them as consumer taste shocks that are equivalent to price shocks and compute

the change in the cost of living using “quality-adjusted” prices; (ii) or one can hold the taste parameters constant

(e.g. at their initial values) and compute the change in the cost of living using the observed price shocks and

ignoring changes in the demand residuals.

In this section, we provide evidence that these time-varying demand residuals have systematic and intuitive

properties that are consistent with our treatment of them as consumer taste shocks. In particular, we estimate the

following first-order autoregressive process for the log demand residuals for each sector g using our baseline

sample:

ln ϕkt = ρg ln ϕkt−1 + dgt + εkt, (34)

where we pool observations across barcodes and over time for each sector; the autoregressive parameter (ρg)

captures the degree of serial correlation in the demand residuals over time; our normalization requires that the

mean log change in the demand residuals is equal to zero across common varieties within each sector, but we

include the year fixed effects (dgt) for each sector to control for common macro shocks; the stochastic error (εkt)

captures idiosyncratic shocks to the demand residuals for each barcode; we also consider augmented versions

of this specification including age, firm, brand or barcode fixed effects.

In Table IV, we report the results of estimating this regression (34) for each sector separately. In the top

panel, we give the estimated coefficient on the lagged dependent variable. In the bottom panel, we list the R2
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of the regression. In each case, we present percentiles of the distribution of the estimates across sectors. In

Column (1), we estimate equation (34) including only the lagged dependent variable and year fixed effects. We

find a positive and statistically significant coefficient on the lagged dependent variable that is just below one

and a high regression R2, which reassuringly suggests that our estimates of consumer tastes are persistent over

time—in three quarters of the sectors more than 77 percent of the variation in consumer tastes for a barcode in

period t can be can be explained by the consumer tastes for the barcode in period t− 1.

In Column (2), we augment this specification with age fixed effects, which are statistically significant at

conventional critical values in this and all subsequent specifications. We find an intuitive pattern in which the

estimated coefficients on the age fixed effects decline in the first year of a barcode’s existence and then are

stable, which is consistent with consumers valuing novelty. Both the coefficient on the lagged dependent vari-

able and the regression R2, however, remain close to unaffected. In Column (3), we augment this specification

with firm fixed effects. We find that these estimated firm fixed effects are highly statistically significant, which

suggests that our estimated consumer tastes are capturing systematic differences in the appeal of the barcodes

supplied by different firms (e.g. because of advertising, branding and marketing). Controlling for these per-

sistent characteristics of firms somewhat increases the explanatory power of the regression (as reflected in the

regression R2) and reduces the coefficient on the lagged dependent variable.

In Column (4), we replace the firm fixed effects with brand fixed effects and find a similar pattern of results,

both in terms of the coefficient on the lagged dependent variable and the regression R2 . In Column (5), we

replace the brand fixed effects with barcode fixed effects. We find that these barcode fixed effects are also

highly statistically significant, which is consistent with consumers valuing some of the barcodes supplied by a

firm more than others (e.g. because of superior product design and characteristics). Once we control for these

persistent characteristics of barcodes, we find a lower, but still statistically significant, coefficient on the lagged

dependent variable and an additional increase in the regression R2. This lower estimated coefficient on the

lagged dependent variable is in line with the idea that consumers tastes for individual colors, sizes, styles and

models of goods can fluctuate from one year to the next with fads and changes in fashion. The increase in the

regression R2 is consistent with the fact that many barcodes are present in the data for only a few years, such

that the barcode fixed effects capture much of the variation in consumer tastes (they capture all of the variation

for barcodes only present for a single cross-section between years t− 1 and t).

To provide additional evidence on the extent to which our estimates capture consumer tastes rather than

measurement or specification error, we obtained data from Young and Rubicam (the U.S. subsidiary of the

world’s largest marketing firm WPP). Young and Rubicam measure consumer preferences or “brand asset

values” (BAVs) by conducting annual surveys of approximately 17,000 U.S. consumers. These BAVs are com-

posed of four basic components: “energized differentiation” measures perceived innovativeness of a product;

“relevance” measures whether a product is suitable for consumers given their preferences; “esteem” captures

brand prestige; and “knowledge” measures how familiar consumers are with a brand. Since marketing data is

reported at the level of the brand rather than the barcode, we estimate the nested CES specification from Sec-

tion III.B. above with sectors and brands as our nests, as discussed in Section A.14A. of the online appendix.

Inverting the demand system, we recover estimates of consumer tastes for each brand and for each barcode
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within each brand, where we normalize brand tastes to have a constant geometric mean within each sector and

barcode tastes to have a constant geometric mean within each brand.

We begin by regressing the level of our estimates of brand tastes on each of the BAV components, in-

cluding sector-time fixed effects to control for common macro shocks across brands within each sector. As

shown in Section A.14A. of the online appendix, we find that our estimates of brand tastes are positively and

significantly correlated with each of the four BAV components. This finding that brands with high estimated

demand residuals correspond to brands that consumers rate highly in surveys is consistent with the idea that

our estimated demand residuals do indeed capture consumer tastes. As the taste-shock bias in the conventional

Sato-Vartia index depends on changes in tastes, we next regress our estimated brand tastes against BAVs in

a specification that also includes brand and sector-time fixed effects. The inclusion of the brand fixed effects

means that the relationship between our estimates of consumer tastes and the BAV components is identified

solely from time-series variation. We find that our estimates of consumer tastes are positively correlated with

each of the four BAV components, and the coefficients on relevance, esteem, and knowledge are statistically

significant at conventional critical values. Therefore, in both levels and changes, our estimated demand resid-

uals are systematically related to separate measures of brand asset values from consumer surveys, consistent

with them capturing consumer tastes.

Taken together, the results of this section are consistent with the view that each barcode has some underlying

level of consumer appeal based on its time-invariant physical attributes (captured by the barcode fixed effect),

and consumer tastes for the barcode evolve stochastically over time around this underlying level of appeal.

In the Sato-Vartia index, these stochastic shocks to tastes are incorporated into the expenditure share weights

(implicitly including changes in consumer tastes), but are omitted from the price terms (excluding changes in

consumer tastes). In contrast, our CUPI consistently treats these demand residuals as consumer tastes in both

the expenditure-share weights and price terms.

V.C. Comparison with Conventional Index Numbers

We now turn to examine the implications of our results for the measurement of changes in the cost of living.

In general, there are three reasons why price indexes can differ: differences in the specification of substitution

patterns, differences in the treatment of new varieties, and differences in assumptions about taste shocks. In the

remainder of this section, we show that exact CES price indexes yield similar measures of the change of the cost

of living to superlative price indexes under the same assumptions of no entry and exit and time-invariant tastes

for each common variety. Therefore, the differences between our new CES unified price index and existing

price indexes in the next section reflect the treatment of entry/exit and taste shocks for common varieties rather

than alternative assumptions about substitution patterns between varieties.

For each sector and time period, we compute five conventional price indexes: (i) the Laspeyres index,

which assumes a zero elasticity of substitution and weights varieties by their initial-period expenditure shares;

(ii) the Cobb-Douglas index, which assumes an elasticity of substitution of one; (iii) the Fisher index, which

is a superlative index that equals the geometric average of the Laspeyres and Paasche indexes, and is exact

for quadratic mean of order-r preferences with time-invariant tastes; (iv) the Törnqvist index, which is also
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superlative and is exact for translog preferences with time-invariant tastes; and (v) the Sato-Vartia index, which

is exact for CES preferences with time-invariant tastes. All of these price indexes are defined for common

varieties. We use our baseline definition of the set of common varieties for the fourth quarters of years t− 1

and t, which includes barcodes that appear in those two periods and for more than six years, and that are

available for three quarters before the fourth quarter of year t− 1 and for three quarters after the fourth quarter

of year t. With nine years and 104 sectors, we have a sample of just over 800 price changes across sectors and

over time.

In Figure I, we display kernel density estimates of the distribution of four-quarter price changes across

sectors and over time. We express each of the other price indexes as a difference from the superlative Fisher

index, so a value of zero implies that the price index coincides with the Fisher index. The most noticeable

feature of the graph is that the Törnqvist and Sato-Vartia indexes yield almost exactly the same change in the

cost of living as the Fisher index. The standard deviation of the difference between the Sato-Vartia and Fisher

indexes is 0.06 percentage points per year, which compares closely with the corresponding standard deviation

of the difference between the Törnqvist and Fisher indexes of 0.04 percentage points per year. In contrast,

indexes that assume an elasticity of substitution of zero (the Laspeyres index) or one (the Cobb-Douglas index)

have standard deviations from the Fisher index that both equal 0.3 percentage points per year—about five times

larger than that for the Sato-Vartia index—and the Laspeyeres index has an upward bias of around 0.5 percent

per year.

Therefore, these results suggest that assuming a CES functional form instead of a flexible functional form

(as for the Fisher and Törnqvist price indexes) has relatively little impact on the measured change in the cost

of living under the common set of assumptions of no entry and exit and no taste shocks for common varieties.

V.D. The CES Unified Price Index

We now maintain the assumption of CES preferences but allow for the entry and exit of varieties and taste

shocks for individual common varieties. Using our estimated elasticities of elasticity of substitution (σ), we

compute our common variety price index (9), the variety correction term, and hence our unified price index (8)

for each sector using our baseline definition of the set of common varieties.

We start with the Feenstra (1994) variety adjustment term that captures the impact of entry and exit. This

term depends on both the elasticity of substitution (σg) and relative expenditure shares on common varieties

(λgt/λgt−1). It controls both the difference between the Feenstra and Sato-Vartia price indexes and the dif-

ference between our CUPI in equation (8) and our CCV in equation (9). In Figure II, we display a histogram

of the relative expenditure shares on common varieties (λgt/λgt−1) across sectors and over time. If entering

varieties had similar characteristics to exiting varieties, the prices and market shares of exiting varieties would

match those of new varieties, resulting in a λgt/λgt−1 ratio of one. The fact that these ratios are almost always

less than one indicates that new varieties tend to be more attractive than disappearing ones. In barcode data,

this variety upgrading is fully captured in the entry and exit term, because as discussed above any change in

physical attributes of a variety leads to the introduction of a new barcode.

We now quantify the relative magnitude of the biases from abstracting from entry and exit and taste shocks
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for common varieties. We compare our CES unified price index (CUPI) that incorporates both of these features

of the data to existing price indexes that abstract from one or more of these sources of bias in the measurement

of changes in the cost of living. For each sector and time period, we compute alternative measures of changes

in the cost of living, and then aggregate across sectors using expenditure-share weights to compute a measure

of the change in the aggregate cost of living.

In Figure III, we plot the resulting measures of the change in the aggregate cost of living using our CUPI

and a range of alternative price indexes. We show the 95 percent bootstrapped confidence intervals for the

CUPI using gray shading.11 It is well-known that conventional indexes—Fisher, Törnqvist and Sato-Vartia

(CES)—are bounded by the Paasche and Laspeyres indexes. Thus, we can think of conventional indexes as

giving us a band of cost-of-living changes that is determined by assumptions about consumer substitution

patterns, under the assumption of no entry and exit and no taste shocks for any common variety. Consistent

with our results in the previous section, we find a relatively small gap between the Laspeyres and Paasche price

indexes, implying that different assumptions about substitution patterns have a relatively minor impact on the

measurement of the cost of living.

The bias from abstracting from the entry and exit of varieties can be seen in Figure III by comparing the

CUPI and the CCV price indexes (from equations (9) and (8)). We find a substantial impact of entry and exit on

the measurement of the cost of living, equal to around one percentage point per year. Therefore, if one abstracts

from the fact that new varieties tend to be systematically better than disappearing varieties (as measured in the

CES demand system by their relatively greater expenditure shares), one systematically overstates the increase

in the cost of living over time.

The taste-shock bias from neglecting taste shocks for individual common varieties can be discerned in

Figure III from comparing our CUPI and the Feenstra index. Both of these price indexes are exact for CES

preferences and allow for the entry and exit of varieties. However, the Feenstra price index uses the Sato-

Vartia index for common varieties (assuming time-invariant tastes for each common variety), whereas the

CUPI uses the CCV price index for common varieties (allowing for changes in relative tastes across common

varieties). As shown in the figure, we find that this bias is around half as large as that from abstracting from

entry and exit (0.4 percentage points per annum).12 Therefore, the internal inconsistency in the Sato-Vartia

index from including time-varying demand residuals in expenditure share weights but not in measured prices

has quantitatively relevant effects on the measurement of changes in the cost of living. Conventional price

indexes overstate the increase in the cost of living over time, because other things equal varieties experiencing

an increase in tastes (for which the change in observed prices is greater than the true change in taste-adjusted

prices) receive a higher expenditure-share weight than varieties experiencing a decrease in tastes (for which the

change in observed prices is smaller than the true change in taste-adjusted prices).

11We randomly sample barcodes by sector with replacement for 100 bootstrap replications. For each replication, we estimate the
elasticities of substitution for each sector, and recompute the CUPI using our baseline definition of common varieties. Using the
distribution of values for the CUPI across these 100 replications, we construct the 95 percent confidence intervals.

12The average value from 2005 to 2013 of the Paasche index is 1.7 percent; the Laspeyres, 2.6; the CCV is 1.8; the CUPI is 0.9
percent; and the Feenstra-CES is 1.3 percent.
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V.E. Specification Checks

Our baseline specification assumes both CES demand and that consumer tastes have a constant geometric mean

across common goods. Under these assumptions, we recover a time-varying consumer taste parameter for each

good, such that our model exactly rationalizes the observed data on prices and expenditure shares. In this

section, we present two specification checks on the reasonableness of these assumptions. In the next section,

we provide further evidence on the adequacy of these assumptions by comparing our baseline CES estimates

with those from a more flexible mixed CES specification.

Our first specification check uses the IIA property of CES, which implies that the change in the cost of

living can be computed either (i) using all common varieties and an entry/exit term or (ii) choosing a subset

of common varieties and adjusting the entry/exit term for the omitted common varieties. If preferences are

CES and taste shocks average out across varieties such that the geometric means of tastes are constant for both

definitions of common varieties, we should obtain the same change in the cost of living from these two different

specifications:
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where Ω∗∗t ⊂ Ω∗t ⊂ Ωt denotes a subset of common varieties; µt and µt−1 are the shares of this subset in total

expenditure:
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Building on our earlier notation, we use s∗∗kt to denote the share of an individual common variety in overall

expenditure on this subset of common varieties:

s∗∗t =
(pkt/ϕkt)

1−σ

∑`∈Ω∗∗t (p`t/ϕ`t)
1−σ

; (37)

where we use a double tilde to denote a geometric mean across this subset of common varieties: ˜̃s∗∗t =(
∏k∈Ω∗∗t

s∗∗kt

) 1
N∗∗t ; N∗∗t = |Ω∗∗t | is the number of varieties in this subset; and the derivations for all results

in this section are reported in Section A.12 of the online appendix. In contrast, the two expressions for the

change in the cost of living in equation (35) differ in general if (i) preferences are not CES and/or (ii) the

geometric means of consumer tastes are not constant for both definitions of common varieties (in which case

these two expressions differ by the ratio of the changes in these geometric means).

We implement this joint specification test using alternative definitions of the set of common varieties. We

start with the most restrictive definition, in which we require barcodes to be present in all T years of our sample.

Using this definition, we compute the change in the cost of living for each four-quarter difference, and chain

these four-quarter differences to measure the change in the cost of living over time. We next progressively relax

this definition, such that the set of common varieties for the fourth quarters of years t− 1 and t is defined as the

subset of varieties present in those periods and for a total number of x years, where 1 < x ≤ T. For each value

of x, we again chain the four-quarter differences to measure the change in the cost of living over time. We
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continue this process until we arrive at the most inclusive definition of common varieties, which corresponds

to the set of varieties present in the fourth quarters of years t− 1 and t (x = 2).

In Figure IV, we show the change in the aggregate cost of living for each year in our sample for these alter-

native definitions of the set of common varieties, where we again aggregate across sectors using expenditure-

share weights. For common variety definitions using thresholds (x) of more than six years or above, we find a

relatively similar change in the cost of living, which is within or close to the 95 percent confidence interval for

our baseline threshold of more than six years. This pattern of results suggests that the joint assumption of CES

preferences and a constant geometric mean of tastes across each of these alternative definitions of common

varieties provides a reasonable approximation to the data. For common goods definitions using thresholds of

less than six years, we find a lower change in the cost of living, which lies outside the 95 percent confidence

for our baseline threshold of more than six years. This pattern of results is consistent with these more inclu-

sive definitions of common goods including a disproportionate number of varieties that are only present in the

sample for a few years. As changes in the estimated time-varying demand residuals are greatest immediately

after entry, the inclusion of these barcodes with strong demand dynamics increases the magnitude of the taste-

shock bias, and reduces the CUPI relative to conventional price indexes. Based on the stability of our empirical

results using thresholds of more than six years or above, and to be conservative in terms of the magnitude of

the taste-shock bias, we used a threshold of more than six years for the definition of common varieties in our

baseline specification, as discussed above.

In our second specification check, we use the class of generalized means of order r to compute the change

in the cost of living for alternative normalizations for consumer tastes. In Figure V, we show the aggregate

change in the cost of living for each year in our sample using our baseline definition of common varieties for

different values for r, ranging from a constant harmonic mean (r = −1), through a constant geometric mean

(r = 0) and a constant arithmetic mean (r = 1), to a constant quadratic mean (r = 2). We find a substantial

taste-shock bias across these different values of r, with the CUPI falling further below the Fisher index as we

increase r. For example, the average percentage point four-quarter differences between the Fisher Index and

the CUPI over the period 2005-2013 are as follows: 0.016 (r = −1), 0.013 (r = 0), 0.015 (r = 1) and

0.014 (r = 2). Therefore, our baseline specification of a constant geometric mean (r = 0) is again relatively

conservative in terms of the magnitude of the taste-shock bias.

As a final check on the sensitivity of our results to alternative normalizations, we recompute the log of the

CUPI in equation (8) using the initial expenditure-share-weighted average of the ratio of prices and expenditure

shares for each common variety rather than the unweighted average:

ln
(

Pt

Pt−1

)
=

1
σ− 1

ln
(

λt

λt

)
+ ∑

k∈Ω∗t

s∗kt−1

[
ln
(

pkt

pkt−1

)
+

1
σ− 1

ln

(
s∗kt

s∗kt−1

)]
.

This specification normalizes the initial-expenditure-share weighted average (instead of the unweighted aver-

age) of the demand shocks to zero: ∑k∈Ω∗t
s∗kt−1 ln (ϕkt/ϕkt−1) = 0. As also shown in Figure V, our exact

price index again lies below the Fisher index, with the absolute magnitude of this difference typically larger

using the initial-expenditure-weighted mean than in our baseline specification (CUPI, r = 0).

Taken together, these specification checks confirm the robustness of our finding of a substantial taste-shock
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bias to alternative normalizations for consumer tastes, and suggest that our joint assumption of CES preferences

and log taste shocks that average out across common varieties provides a reasonable approximation to the data

for sets of common varieties present for a relatively large number of years.

VI. Mixed CES Specification

In this section, we examine the robustness of our results to relaxing the independence of irrelevant alternatives

(IIA) and symmetric substitution properties of CES by considering a mixed CES specification with hetero-

geneous groups of consumers, as discussed in Section III.C. above. We use low-income and high-income

households as our two groups, based on those households with above-median and below-median income. Al-

though the income differences between these two groups are substantial (recall that median income is around

$50-59,000), they are of course smaller than in other settings, such as in developed versus developing countries.

We allow both the elasticity of substitution and the taste parameter for each variety to differ between these two

groups of households. Therefore, this specification incorporates non-homotheticities between these two groups

in a more flexible way than the non-homothetic CES specification in Section III.A. above, which imposed a

common elasticity of substitution for all consumers.

In Figure VI, we report our estimates of the elasticities of substitution for high- and low-income households

using the Feenstra (1994) estimator. As shown in the figure, we find similar estimated elasticities for the pooled,

high-income, and low-income samples, with a correlation between the estimated elasticities for the high- and

low-income households of 0.80. Therefore, although this mixed CES specification allows in principle for

heterogeneity in estimated elasticities of substitution, we find in practice similar substitution behavior for these

two groups of households in our data on barcoded goods.

In Figure VII, we show a bin scatter of the log taste parameters (ln ϕkt) for each group of households

against the average of the two groups. We pool observations across sectors, where the log taste parameters for

each sector and year are normalized to have a mean of zero. We use a bin scatter with 100 percentiles and also

display the regression line. We find a strong positive and statistically significant relationship between the taste

parameters for the two groups, with a correlation of 0.96, as reflected in the regression line lying close to the

diagonal. Therefore, on average, we find strong agreement between high- and low-income households about

which varieties are more or less appealing.

Another feature of Figure VII is that the slope for low-income households is lower than that for high-

income households. This result suggests that high-income households tend to value more appealing barcodes

relatively more than low-income households. If average rates of price increase differ between the varieties

preferred by high- and low-income households, this can induce differences in the inflation rate for the two

groups. These differences were the main focus of Jaravel (2019), which showed that the average change in the

cost of living for low-income households exceeds that for high-income households by 0.65 percent per year

for common varieties and by 0.78 percent per year once the entry and exit of varieties is taken into account.

We find the same pattern of differences in the cost of living between the two groups, as shown in Figure VIII

using our baseline definition of the set of common varieties. On average, the CCV and the CUPI price indexes
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for low-income households are 0.22 and 0.37 percent per year higher than those for high-income households.

Therefore, our price indexes capture the same properties of the data as found in other studies.

We now examine the magnitude of the taste-shock bias for the two groups of households. As evident from

Figure VIII, most of the variance in annual changes in the cost of living is due to price changes that affect

high- and low-income households similarly. The variance in the difference in the cost-of-living between the

two groups is around one fifth as large as the variance in the change in the cost of living measured on average

for each year. Over the full sample period, the CCV rose by 2.1 percent per year on average, which compares to

2.1 percent for the CCV for low-income households and 1.9 percent for the CCV for high-income households.

We see a similar pattern for the CUPI, which rose by 1.4 percent on average, compared to 1.4 and 1.1 percent

for low- and high-income households respectively.

Taken together these results suggest that while we can find evidence of heterogeneity in the taste parameters

for individual varieties between high- and low-income households, we find similar elasticities of substitution

across varieties for these two groups. Furthermore, the heterogeneity in taste parameters does not shift the cost

of living for each group of households substantially away from our central estimate.

VII. Further Robustness Checks

In this section, we report a number of further robustness checks. We examine the sensitivity of our measured

changes in the cost of living to the Feenstra (1994) estimated elasticities. Next, we illustrate the relevance of

our results for official measures of the consumer price index (CPI). Finally, we demonstrate the robustness of

our results to the treatment of varieties with smaller expenditure shares for which measurement error could be

relatively more important.

To assess the first point, we use a grid search over the parameter space to demonstrate the robustness of our

results across the range of plausible values for the elasticity of substitution. In particular, we consider a grid

of thirty-eight evenly-spaced values for this elasticity ranging from 1.5 to 20. For each value on the grid, we

compute our CCV and CUPI for each sector and year, and aggregate across sectors using expenditure-share

weights. In Figure A.3 in Section A.14B. of the online appendix, we compare these changes in the cost of living

to the Fisher index. A smaller elasticity of substitution implies that varieties are more differentiated, which

increases the absolute magnitude of the variety correction term for entering varieties being more desirable than

exiting varieties ((1/ (σ− 1)) ln (λt/λt−1) < 0). As a result, the CCV and CUPI fall further below the Fisher

index as the elasticity of substitution becomes small. Nevertheless, across the entire range of plausible values

for this elasticity, we find a quantitatively relevant taste-shock bias.

Next, we illustrate the relevance of results computed using the Nielsen Homescan data for official measures

of the CPI by mapping 89 of our 104 sectors to official CPI categories, as discussed further in Section A.14C. of

the online appendix. We again aggregate across sectors using expenditure share weights to construct measures

of the aggregate cost of living. As shown in Figure A.4 of the online appendix, we find that conventional price

indexes computed using the Homescan data are remarkably successful in replicating properties of official price

indexes, with a positive and statistically significant correlation of 0.99 between the Laspeyres (based on the
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Homescan data) and the CPI. In other words, annual movements in changes in the cost of living as measured

by the BLS for these sectors can be closely approximated by using a Laspeyres index and the Nielsen data.

We find that the difference between the Laspeyres and the Paasche indexes in the Nielsen data is less than one

percentage point per year (consistent with the findings of the Boskin Commission in Boskin et al. 1996). In

contrast, we find a larger bias from abstracting from both entry/exit and taste shocks, with our CUPI more than

one percentage point below the CPI. As a further validation of our measures of changes in the cost of living

using the Nielsen Homescan data, Appendix A.14E. repeats our analysis using the Nielsen Retail Scanner

Dataset as an alternative source of scanner data. In contrast to the Homescan data, these retail scanner data are

not nationally representative, because they are based on a non-random set of participant stores, and purchases

not made at these stores are omitted. Nonetheless, we show that we find the same pattern of year-to-year

changes in the cost of living, with a substantial taste-shock bias.

Finally, we examine the sensitivity of our results to measurement error in expenditure shares for varieties

that account for small shares of expenditure using the properties of CES demand discussed in Section V.E.

above. In particular, we use the property that the change in the cost of living can be computed either (i) using

all common varieties and an entry/exit term or (ii) choosing a subset of common varieties and adjusting the

entry/exit term for the omitted common varieties. Using this property, we recompute the CUPI using the subset

of our baseline sample of common varieties with above-median expenditure shares. This specification is less

sensitive to measurement error for varieties that account for small shares of expenditure, because expenditures

on varieties with below-median expenditure shares only enter the change in the cost of living through the

aggregate share of expenditure on varieties with above-median expenditure shares. As reported in Section

A.14D. of the online appendix, we find a similar change in the aggregate cost of living as in our baseline

specification above.

VIII. Conclusions

Measuring price aggregates is central to international trade and macroeconomics, which depend critically on

being able to distinguish real and nominal income. In such an analysis, one typically faces the challenge

that whatever preferences are assumed do not perfectly fit the data in both time periods without time-varying

demand residuals. We show that a key building block for the existing exact price index for CES preferences

(the Sato-Vartia index for varieties common to a pair of time periods) implicitly treats these demand residuals

in an inconsistent way. On the one hand, this price index assumes time-invariant tastes, and uses observed

price changes and expenditure shares to compute changes in the cost of living. On the other hand, the observed

final-period expenditure shares used in this price index include the time-varying demand residuals.

In this paper, we develop a new exact price index for CES preferences that consistently treats demand

shocks as taste shocks that are equivalent to price shocks. This exact price index expresses the change in the

cost of living solely in terms of observed prices and expenditures. As expenditures depend on relative consumer

tastes (and not the absolute level of consumer tastes), the existence of such an exact price index requires that

we rule out the possibility of a change in the cost of living, even though all prices and expenditures remain
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unchanged. To rule out such an equiproportional change in tastes, we assume that the taste parameters have a

constant geometric mean across common varieties, which is consistent with the assumption that the log demand

shocks are mean zero in the estimation of the demand system. We demonstrate the robustness of our results

to alternative normalizations that rule out such a pure change in consumer tastes using the class of generalized

means.

Our approach uses the invertibility of the CES demand system to recover unique values for unobserved

consumer tastes for each variety (up to our normalization). We use this result to express the change in the cost

of living in terms of only prices and expenditure shares, while allowing for changes in relative consumer tastes

across varieties. We show that the Sato-Vartia index is subject to a substantial taste-shock bias, because it fails

to take into account that an increase in taste for a variety is analogous to a fall in its price. This failure leads to

a systematic overstatement of the change in the cost of living, because consumers substitute towards varieties

that become more desirable. Therefore, other things equal, varieties experiencing an increase in tastes (for

which the change in observed prices is greater than the true change in taste-adjusted prices) receive a higher

expenditure-share weight than varieties experiencing a decrease in tastes (for which the change in observed

prices is smaller than the true change in taste-adjusted prices). In our empirical application using barcode data,

we show that the taste-shock bias is around 0.4 percentage points per year, and is sizable relative to the bias

from abstracting from the entry and exit of varieties.

Although we focus on CES preferences because of their prominence in international trade, macroeconomics

and economic geography, we show that our approach generalizes to other invertible demand systems, including

non-homothetic CES (indirectly additive), nested CES, mixed CES, logit, mixed logit, translog and AIDS. In

each case, conventional price indexes assume time-invariant tastes and interpret all movements in expenditure

shares as the result of changes in prices, but use observed final-period expenditure shares, which are influenced

by time-varying demand residuals. Through failing to recognize that an increase in tastes is analogous to a

reduction in price, these conventional price indexes are subject to the taste-shock bias. In contrast, our approach

of inverting the demand system to express unobserved taste shocks in terms of observed prices and expenditure

shares can be used to derive an exact price index that treats these time-varying demand residuals in an internally

consistent way.

Princeton University, NBER and CEPR

Columbia University and NBER
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TABLE I: Descriptive Statistics

N Mean Sd Min P5 P25 P50 P75 P95 Max

Sector Sample Size 104 64,189 54,210 1,999 9,033 26,372 47,747 93,222 151,930 273,286

Number of UPCs 104 15,683 14,852 751 1,706 5,188 11,201 21,711 45,310 79,576

Mean No. Years UPC is in Market 104 3.80 1.08 1.65 2.09 3.16 3.63 4.57 5.81 6.43

Mean λt 104 0.82 0.12 0.34 0.62 0.78 0.85 0.91 0.96 0.97

Mean λt−1 104 0.91 0.07 0.57 0.75 0.90 0.94 0.96 0.98 0.99

Mean λt
λt−1

104 0.90 0.08 0.53 0.73 0.86 0.91 0.95 0.98 0.99

Percent of UPCs that Enter in a Year 104 38.33 9.64 20.89 24.32 30.93 37.80 43.10 55.36 66.60

Percent of UPCs that Exit in a Year 104 37.49 9.39 21.69 24.45 30.43 36.55 42.64 54.15 65.65

Percent Growth Rate in UPCs 104 3.08 14.29 -5.27 -1.48 0.36 1.26 3.40 5.90 145.26

Mean ∆ ln pkt 104 0.01 0.02 -0.08 -0.03 -0.00 0.01 0.02 0.04 0.06

sd(∆ ln pkt) 104 0.21 0.03 0.11 0.17 0.18 0.20 0.22 0.27 0.32

Mean ∆ ln skt 104 -0.20 0.11 -0.65 -0.42 -0.24 -0.17 -0.11 -0.08 -0.05

sd(∆ ln skt) 104 1.40 0.11 1.13 1.21 1.33 1.40 1.47 1.59 1.68

Note: Sample pools all households and aggregates to the national level using sampling weights to construct a nationally-representative quarterly database
by barcode on the total value sold, total quantity sold, and average price; λt and λt−1 are the shares of expenditure on common goods in total expenditure
in year t and t− 1 respectively (four-quarter difference); N is the number of sectors; we compute statistics for each sector as the average value across
years; mean, standard deviation (sd (·)), maximum, minimum and percentiles p5-p95 are based on the distribution of these time-averaged values across
sectors. Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center at The University of Chicago
Booth School of Business.
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TABLE II: Percentiles of the Distribution of Estimated Feenstra (1994) Elasticities of Substitution (σ) Across
Sectors

Percentile Estimated Feenstra Elasticity

Min 4.39
5th 5.11

25th 5.69
50th 6.48
75th 7.25
95th 8.51
Max 20.86

Note: Percentiles of the distribution of estimated Feenstra (1994) elasticities of substitution across sectors. Calculated based on data from The Nielsen
Company (US), LLC and provided by the Marketing Data Center at The University of Chicago Booth School of Business.
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TABLE III: Distribution of Sato-Vartia Elasticities for Each Year and Sector

Deviation from Time Mean
Mean Median SD p10 p25 p50 p75 p90

Sato-Vartia -1.90 -2.55 196.27 -53.24 -16.64 -0.23 12.63 35.21

Note: Sato-Vartia elasticities are estimated for each sector and pair of time periods using equation (A.24) in Section A.4 of the online appendix; mean
is the average of these elasticities across sectors and over time ( 1

GT ∑t,g σgt); standard deviation is the average across sectors of the standard deviation

over time in these estimated elasticities normalized by their time mean
(

σgt − 1
T ∑t σgt

)
within each sector; percentiles are based on the distribution

across sectors of the standard deviation over time in these normalized elasticities
(

σgt − 1
T ∑t σgt

)
within each sector. We exclude the top and bottom

one-percent market share changes within each sector to limit the influence of outliers (including these observations results in an even higher standard
deviation for the Sato-Vartia elasticity). Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center at
The University of Chicago Booth School of Business.
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TABLE IV: Persistence of Estimated Time-Varying Barcode Tastes (ϕkt)

Percentile (1) (2) (3) (4) (5)

Coefficient

Min 0.81 0.81 0.69 0.51 -0.25
5th 0.83 0.83 0.74 0.70 -0.01
25th 0.89 0.89 0.81 0.79 0.05
50th 0.93 0.93 0.89 0.86 0.11
75th 0.96 0.96 0.94 0.93 0.17
95th 0.98 0.98 0.97 0.97 0.25
Max 0.99 0.99 0.99 0.99 0.50

R2

Min 0.64 0.64 0.67 0.67 0.83
5th 0.68 0.69 0.70 0.71 0.85
25th 0.77 0.77 0.78 0.79 0.89
50th 0.85 0.85 0.86 0.86 0.93
75th 0.93 0.93 0.93 0.93 0.97
95th 0.96 0.96 0.96 0.96 0.98
Max 0.98 0.98 0.98 0.98 0.99

Time Fixed Effects Yes Yes Yes Yes Yes
Age Fixed Effects Yes Yes Yes Yes
Firm Fixed Effects Yes
Brand Fixed Effects Yes
Barcode Fixed Effects Yes

Note: Columns in Table IV report the results of estimating the regression (34) of the log demand residuals for each barcode (ln ϕkt) on the lagged
dependent variable and the controls specified at the bottom of the table. Regression sample for each sector is an unbalanced panel that pools common,
entering and exiting barcodes over time. Barcodes are nested within brands which are nested into firms which are in turn nested within sectors (product
groups). The top panel reports percentiles of the estimated coefficient on the lagged dependent variable across sectors. The second panel reports
percentiles of the estimated R2 across sectors. Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data
Center at The University of Chicago Booth School of Business.
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FIGURE I: Differences in Price Indexes from the Fisher Index

Note: Kernel densities of the distribution across sectors and over time of the difference between price indexes and the Fisher index. Price indexes are
measured as proportional four-quarter changes for each sector for our baseline sample of common barcodes: (

(
P∗gt − P∗gt−1

)
/P∗gt−1). SV-CES is the

Sato-Vartia price index (the special case of equation (10) with ϕkt/ϕkt=1 = 1 for all k ∈ Ω∗t ). Calculated based on data from The Nielsen Company
(US), LLC and provided by the Marketing Data Center at The University of Chicago Booth School of Business.
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FIGURE II: Shares of Common Goods in Expenditure in period t relative to period t− 1 (λgt/λgt−1),
Four-Quarter Differences by Sector

Note: Histogram of relative expenditure shares on common barcodes across sectors g and over time t (λgt/λgt−1) using our baseline sample of common
barcodes. Time periods are four-quarter differences. Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing
Data Center at The University of Chicago Booth School of Business.
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FIGURE III: Four-Quarter Proportional Changes in the Aggregate Cost of Living ((Pt − Pt−1) /Pt−1)

Note: Proportional change in the aggregate cost of living is computed by weighting the four-quarter proportional change in the cost of living for each of
the sectors in our data (

(
Pgt − Pgt−1

)
/Pgt−1) by their expenditure shares. CCV stands for CES common-variety price index (equation (9)). CUPI stands

for CES unified price index (equation (8)). The grey band around the CUPI shows its 95 percent bootstrapped confidence interval (100 replications).
Both the CUPI and Feenstra CES correct for the entry and exit of varieties, but the CUPI uses our CES common variety price index (equation (9)),
whereas Feenstra-CES uses the Sato-Vartia price index for common varieties (the special case of equation (10) in which ϕkt/ϕkt−1 = 1 for all k ∈ Ω∗t ).
Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center at The University of Chicago Booth School
of Business.
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FIGURE IV: CUPI for Alternative Definitions of the Set of Common Varieties

Note: Proportional change in the aggregate cost of living is computed by weighting the four-quarter proportional change in the cost of living for each
of the sectors in our data (

(
Pgt − Pgt−1

)
/Pgt−1) by their expenditure shares. CUPI stands for CES unified price index (equation (8)). The CUPI is

calculated for different definitions of the common set of barcodes. Each definition requires that a barcode is present in years t− 1 and t and a different
total number of years in the sample. The grey band around the CUPI for our baseline definition of common goods (>6 year) shows its 95 percent
bootstrapped confidence interval (100 replications). Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing
Data Center at The University of Chicago Booth School of Business.

43



-.0
3

0
.0

3
.0

6

2005 2006 2007 2008 2009 2010 2011 2012 2013

CUPI (r=0) 95% CI CUPI (r=-1) CUPI (r=0)
CUPI (r=1) CUPI (r=2) Fisher
CUPI - Initial Shares

FIGURE V: CUPI and CCV with Different Normalizations

Note: Proportional change in the aggregate cost of living is computed by weighting the four-quarter proportional change in the cost of living for each
of the sectors in our data (

(
Pgt − Pgt−1

)
/Pgt−1) by their expenditure shares. CUPI stands for CES unified price index. The grey band around the

CUPI shows its 95 percent bootstrapped confidence interval (100 replications). The CUPI is calculated for different normalizations of consumer tastes,
in which generalized means of consumers tastes are held constant (see equation (16)), including the harmonic mean (r = −1), the geometric mean
(r = 0), the arithmetic mean (r = 1), and the quadratic mean (r = 2). We also report a robustness test in which the CUPI is calculated normalizing
the initial-expenditure-share weighted mean of the log taste shocks to equal zero. Calculated based on data from The Nielsen Company (US), LLC and
provided by the Marketing Data Center at The University of Chicago Booth School of Business.

44



5
10

15
20

25
Es

tim
at

ed
 E

la
st

ic
ity

0 20 40 60 80 100
Sectors (ranked by Feenstra elasticity estimates)

Feenstra Feenstra Low Income Feenstra High Income

FIGURE VI: Estimated Elasticities for High- and Low-Income Households

Note: Estimated elasticities of substitution for each sector. Sectors are ranked by the estimated elasticity for our baseline sample (including both high-
and low-income households). Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center at The
University of Chicago Booth School of Business.
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FIGURE VII: Taste Parameters for High- and Low-Income Consumers

Note: Regression lines and bin scatters of the estimated log taste parameter (log ϕkt) for each barcode and time period for high- and low-income
households (vertical axis) against the corresponding estimate for our baseline sample including all households (horizontal axis). Log taste parameters
have a mean of zero for each sector and time period. Time periods are four-quarter differences. Calculated based on data from The Nielsen Company
(US), LLC and provided by the Marketing Data Center at The University of Chicago Booth School of Business.
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FIGURE VIII: Four-Quarter Proportional Changes in the Aggregate Cost of Living ((Pt − Pt−1) /Pt−1), All
Households and High- and Low-Income Households

Note: Proportional change in the aggregate cost of living is computed by weighting the four-quarter proportional change in the cost of living for each
of the sectors in our data (

(
Pgt − Pgt−1

)
/Pgt−1) by their expenditure shares. CCV is our CES common variety price index (equation (9)); CUPI is

our CES unified price index (equation (8)). The grey band around the CUPI shows its 95 percent bootstrapped confidence interval (100 replications).
High- and low-income versions of these indexes were computed using only price and expenditure data for households with above and below the median
household income respectively. Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center at The
University of Chicago Booth School of Business.
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