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Aggregation and the Gravity Equation†

By Stephen J. Redding and David E. Weinstein*

One of the most successful empirical rela-
tionships in economics is the gravity equation, 
which relates bilateral trade between an origin 
and destination to bilateral frictions, origin char-
acteristics, and destination characteristics. A 
key decision for researchers in estimating this 
relationship is the level of aggregation. While 
the gravity equation is log linear, aggregation 
involves summing the level rather than the log 
level of trade. Therefore, Jensen’s inequality 
appears to imply that if a log-linear gravity 
equation holds at one level of aggregation, it 
cannot simultaneously hold at another level of 
aggregation. In such circumstances, estimating 
the gravity equation at another level of aggrega-
tion at best provides a log-linear approximation 
to the data. This problem is compounded by the 
absence of a clear theoretical consensus about 
the appropriate level of aggregation at which to 
estimate the gravity equation. In line with this 
theoretical ambiguity, some researchers have 
estimated this relationship at the aggregate 
level, while others have estimated it using data 
on regions, sectors, or even firms.

In this paper, we use the nested constant elas-
ticity of substitution (CES) demand system to 
show that a log-linear gravity equation holds 
exactly at each nest of utility. Using the indepen-
dence of irrelevant alternatives (IIA) properties 
of CES, we derive an exact Jensen’s inequality 
correction term for aggregation across the nests 
of the utility function. We use this result to 
decompose the overall effect of distance on bilat-
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eral trade in the aggregate gravity equation into 
the contribution of different terms from sectoral 
gravity equations: (i) origin fixed effects; (ii) 
destination fixed effects; (iii) distance; (iv) our 
Jensen’s inequality or composition term; and 
(v) the error term. These terms vary bilaterally 
with the set of sectors in which trade occurs and 
appear in the error term in a conventional aggre-
gate gravity equation. We show that our com-
position term makes a quantitatively relevant 
contribution toward the overall effect of distance 
in the aggregate gravity equation. Although we 
focus on the aggregate economy and sectors as 
our two nests of utility, our theoretical results 
hold for any definition and number of nests with 
the CES demand system. Therefore, our analy-
sis also encompasses, for example, regions and 
firms as other possible levels of aggregation.1 
Finally, although for brevity we focus on inter-
national trade, our analysis also goes through for 
other gravity applications with a nested CES or 
nested logit demand structure, including migra-
tion, commuting, and financial flows.

Our paper is related to a large gravity equa-
tion literature in international trade, including 
Anderson and  van Wincoop (2003) and Allen, 
Arkolakis, and Takahashi (forthcoming), as sur-
veyed in Anderson (2011) and Head and Mayer 
(2014). Most empirical research has estimated 
the gravity equation using aggregate trade 
between countries, as in Eaton and  Kortum 
(2002) and Redding and  Venables (2004). 
However, other studies have instead used more 
disaggregated data on sectors, regions, and even 
firms, as in Davis and Weinstein (1999); Head 
and Ries (2001); Feenstra, Markusen, and Rose 
(2001); Combes, Lafourcade, and  Mayer 
(2005); Berthelon and Freund (2008); Bernard, 

1 Whereas we focus on gravity equation estimation for 
sectoral and aggregate trade, Redding and Weinstein (2017) 
develop a theoretical framework for aggregating from mil-
lions of trade transactions on firms and products to national 
trade and welfare using data on trade values and quantities.
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Redding, and  Schott (2011); and Bas, Mayer, 
and Thoenig (2017).

The remainder of this paper is structured as 
follows. In Section I, we develop our main the-
oretical result. In Section II, we estimate grav-
ity equations at both the sectoral and aggregate 
levels. We use these estimates to decompose 
the overall effect of distance on bilateral trade 
in the aggregate gravity equation. Section III 
concludes.

I. Theoretical Framework

We consider a simple model of international 
trade across countries and sectors based on 
differentiation by origin following Armington 
(1969). Although we choose this formulation for 
simplicity, our results hold for any international 
trade model with a nested CES import demand 
system, including for example the multi- sector 
Ricardian model of Costinot, Donaldson, 
and Komunjer (2012), a multi-sector version of 
Krugman (1980), and a multi-sector version of 
Melitz (2003) with an untruncated Pareto pro-
ductivity distribution.

A. Preferences

The world economy consists of a number 
of countries indexed by  d, o ∈ Ω , where we 
use  d  as a mnemonic for destination and  o  as 
a mnemonic for origin. The preferences of the 
representative consumer in each destination are 
defined over consumption indexes (  C ds   ) for a 
number of sectors indexed by  s ∈ Ξ , where we 
use  s  as a mnemonic for sector. The utility func-
tion is

(1)   U d   =   [  ∑ 
s∈Ξ

      ( Θ ds    C ds  )      
σ−1 _ σ   ]    

  σ _ σ−1  

 , 

where  σ > 1  is the elasticity of substitution 
between sectors and   Θ ds   > 0  is the taste of the 
representative consumer in destination  d  for the 
output of sector  s .

The consumption index for destination  d  in 
sector  s  (  C ds   ) is defined over the consumption 
of the output of each origin  o  within that sector 
(  c dos   ):

(2)   C ds   =   
[

  ∑ 
o∈ Ω ds  

      ( θ dos    c dos  )      
 ν s  −1

 _  ν s     
]

    
  

 ν s   _  ν s  −1  

 , 

where   ν s   > 1  is the elasticity of substitution 
across countries within sectors; we allow this 
elasticity to differ across sectors  s ;   θ dos   ≥ 0  
is the taste of the representative consumer in 
destination  d  for the goods supplied by origin  
o  within sector  s ; and   Ω ds   ⊆ Ω  is the set of ori-
gins from which destination  d  consumes goods 
in sector  s  in positive amounts.

Goods are produced under conditions of per-
fect competition and constant returns to scale 
using a composite factor with unit cost   η os    in 
sector  s  in origin  o . Trade is subject to iceberg 
variable trade costs, such that   τ dos   > 1  units of 
a good must be shipped from origin  o  to destina-
tion  d ≠ o  in order for one unit to arrive, where   
τ dds   = 1 . As a result, the “cost inclusive of 
freight” (cif) price in destination  d  of the good 
produced by origin  o  in sector  s  is

(3)   p dos   =  τ dos    p os   =  τ dos    η os  . 

Using these equilibrium prices and CES pref-
erences, we can write the import expenditure of 
destination  d  on goods in sector  s  from a foreign 
origin  o ≠ d  as

(4)   x dos   =   (  
 τ dos    η os   _ 

 θ dos  
  )    

1− ν s  
    ds      ds  

  ν s  −1 , 

where    ds   =  [ ∑ o∈ { Ω ds  :o≠d}       x dos  ]   is total expen-

diture on foreign imports within sector  s ; we 
allow destination  d  to have zero imports from 
some origins  o ≠ d  within sector  s , such that 
  { Ω ds   : o ≠ d}  ⊆ Ω ; we rationalize these zeros 
in terms of either zero tastes (  θ dos   → 0 ) or 
infinite trade costs (  τ dos   → ∞ ); and    ds    is the 
price index for foreign imports defined as

(5)    ds   =   
[

  ∑ 
o∈ { Ω ds  :o≠d} 

      (  
 p dos   _ 
 θ dos  

  )    
1− ν s  

 
]

    
  1 _ 1− ν s  

  

 . 

B. Sectoral Gravity

We first show that this multi-sector Armington 
model implies a log-linear gravity equation for 
sectoral trade. Taking logarithms in equation (4) 
for pairs with positive trade, we obtain

(6)  ln  x dos   =  γ os   +  λ ds   −  ( ν s   − 1) ln  τ dos   +  u dos  , 
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where   γ os    is a fixed effect for origin  o  in sector  s ; 
  λ ds    is a fixed effect for destination  d  in sector  s ; 
and   u dos    is a stochastic error.

C. Aggregate Gravity

We next show that this multi-sector Armington 
model also implies a log-linear gravity equation 
for aggregate trade. As a first step, note that 
aggregate foreign imports in destination  d  from 
origin  o ≠ d  are the sum of imports across sec-
tors  s :

(7)    do   =   ∑ 
s∈ Ξ do  

     x dos  , o ≠ d, 

where   Ξ do   ⊆ Ξ  is the set of sectors in which 
destination  d  has positive imports from origin  
o ≠ d .

At first sight, equations (6) and (7) appear 
inconsistent with a log-linear aggregate gravity 
equation. Although the sectoral gravity equation 
(6) is log linear, aggregate trade in equation (7) 
is the sum of the level rather than the log level 
of sectoral trade. However, we now derive an 
exact Jensen’s inequality correction term, which 
enables us to write aggregate bilateral trade in a 
log-linear form.

As a second step, we rewrite destination  d ’s  
aggregate imports from origin  o ≠ d  (   do   ) 
as the sum across sectors of the share of these 
imports in its total foreign import expenditure 
multiplied by total foreign import expenditure 
(   d   ):

(8)    do   =  
[

  
 ∑ s∈ Ξ do        x dos  

  _________________  
 ∑ j∈ { Ω d  :j≠d}       ∑ r∈ Ξ dj        x djr  

  
]

   d  . 

As a third step, we define two measures of 
the importance of destination  d ’s imports from 
foreign origin  o ≠ d  in sector  s . The first is rel-
ative to total imports from foreign origin (   dos   ) 
and the second is relative to total imports from 
all foreign origins (   dos   ):

(9)    dos   ≡   
 x dos   _ 

 ∑ r∈ Ξ do        x dor  
   ,

(10)    dos   ≡   
 x dos   _________________  

 ∑ j∈ { Ω d  :j≠d}       ∑ r∈ Ξ dj        x djr  
  . 

Using the denominators in these two definitions, 
destination  d ’s aggregate imports from origin  o  

in equation (8) can be rewritten in the following 
log-linear form:

(11)  ln   do   =  Γ do   +  Λ do   −  T do   +  J do   +  U do  , 

where   Γ do    is an average of the origin-sector 
fixed effects (  γ os   );   Λ do    is an average of the des-
tination-sector fixed effects (  λ ds   );   T do    captures 
the average effect of sectoral bilateral trade costs 
((  ν s   − 1)ln  τ dos   );   J do    is our Jensen’s inequality or 
composition term, which includes    dos    and    dos   , 
and controls for the difference between the mean 
of the logs and the log of the means;   U do    is an 
average of the sectoral error terms (  u dos   ). These 
averages are taken across sectors with positive 
trade, and hence vary bilaterally, as shown in the 
online Appendix.

Absorbing the bilateral variation in the com-
ponents   Γ do   ,   Λ do   ,   J do   , and   U do    into the error term, 
we can re-write equation (11) as a conventional 
aggregate gravity equation:

(12)  ln   do   =  η  o  
  +  μ  d  

  −  V     ln  τ do   +  w  do  
  , 

where   η  o  
   is an origin fixed effect;   μ  d  

   is a desti-
nation fixed effect;   τ do    is an aggregate measure 
of bilateral trade costs;   V      is the coefficient on 
this aggregate trade cost measure; and   w  do  

    is the 
transformed error term, which includes all bilat-
eral variation not captured in the aggregate trade 
cost measure, as defined in the online Appendix.

As well as estimating the aggregate grav-
ity equation for overall bilateral trade in equa-
tion (12), we can also use the log-linear form 
of equation (11) to estimate aggregate gravity 
equations for each bilateral component of over-
all trade (  Γ do   ,   Λ do   ,   T do   ,   J do   ,   U do   ):

(13)    Γ do   =  η  o  
Γ  +  μ  d  

Γ  −  V   Γ   τ do   +  w  do  
Γ  , 

   Λ do   =  η  o  
Λ  +  μ  d  

Λ  −  V   Λ   τ do   +  w  do  
Λ  , 

 −   T do   =  η  o  
T  +  μ  d  

T  −  V   T   τ do   +  w  do  
T  , 

   J do   =  η  o  
J   +  μ  d  

J   −  V   J   τ do   +  w  do  
J  , 

   U do   =  η  o  
U  +  μ  d  

U  −  V   U   τ do   +  w  do  
U  , 

where we can compute   Γ do   ,   Λ do   ,  −  T do   ,   J do   , and   
U do    from estimates of the sectoral gravity equa-
tions using the observed data.
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Estimating equations (12) and (13) using 
ordinary least squares (OLS), the estimated 
coefficient on bilateral trade costs for aggregate 
trade (  V     ) is the sum of those for each compo-
nent (  V   Γ  ,   V   Λ  ,   V   T  ,   V   J  ,   V   U  ). Therefore, the rela-
tive magnitude of these estimated coefficients 
reveals the extent to which the effect of trade 
costs on aggregate bilateral trade (  V     ) captures 
the direct effect of these trade costs on sec-
toral bilateral trade (  V   T   ) versus indirect effects 
through changes in the composition of sectors 
with different origin fixed effects (  V   Γ  ), destina-
tion fixed effects (  V   Λ  ), import shares (  V   J   ), and 
error terms (  V   U  ).

II. Data and Empirical Results

In our empirical analysis, we use the BACI 
CEPII world trade database, which reports the 
bilateral value of trade by Harmonized System 
(HS) six-digit product, origin, and destination. 
To abstract from considerations that are specific 
to the agricultural sector, we focus on mining 
and manufacturing products (HS two-digit sec-
tors 16–96), excluding arms and ammunition 
(HS two-digit sector 93). We model bilateral 
trade costs as a constant elasticity function of 
bilateral distance between the most-populated 
cities of each origin and destination. We allow 
this elasticity of bilateral trade costs with respect 
to bilateral distance to differ across sectors. We 
report results using bilateral trade data for 2012, 
but find similar results for other years.

We begin by estimating both an aggregate 
gravity equation and gravity equations for each 
sector. We do so for a range of different defi-
nitions of sectors, including HS one-digit, HS 
two-digit, HS three-digit, and HS four-digit cat-
egories. As we include exporter and importer 
fixed effects in our gravity equations, we drop 
 exporter-sector cells with less than 3 importers 
and  importer-sector cells with less than 3 export-
ers, which results in slightly different samples 
of exporters and importers for each definition of 
sector.

As a first step, we sum bilateral trade flows 
across sectors, and estimate the aggregate grav-
ity equation (12) for each of our samples. As 
reported at the bottom of Table 1 (row (vi)), we 
estimate a similar aggregate distance coefficient 
across these four samples. We find an elastic-
ity of aggregate trade with respect to bilateral 
distance of around  −1.65 , which is in line with 

existing studies, and is statistically significant at 
conventional critical values.

As a second step, we estimate separate gravity 
equations for each sector for our alternative defi-
nitions of sectors. We find substantial heteroge-
neity in the estimated distance coefficients across 
sectors. These estimated distance coefficients 
range from  − 1.9011  to  − 1.2794  using one-digit 
sectors,  − 1.9428  to  − 0.8692  using two-digit 
sectors,  − 1.9480  to  − 0.7242  using three-digit 
sectors, and  −2.0576  to  1.5683  using four-digit 
sectors. By itself, this heterogeneity in estimated 
distance coefficients across sectors suggests that 
the average distance coefficient will vary across 
origin-destination pairs with the set of sectors in 
which there is positive trade. We find that the 
extent of these differences in average distance 
coefficients generally increases as we move 
from less to more disaggregated definitions of 
sectors. For example, using four-digit sectors, 
the unweighted average distance coefficient var-
ies across origin-destination pairs from  − 1.3995  
at the tenth percentile to  − 1.0970  at the nine-
tieth percentile, and the trade-weighted average 
distance coefficient ranges from  − 1.5012  to  
−0.9885  between these same percentiles.

As a third and final step, we compute each 
of the components of aggregate bilateral trade 

Table 1—Decomposition of the Distance Effect in the 
Aggregate Gravity Equation

HS1 HS2 HS3 HS4
(1) (2) (3) (4)

(i) Origin fixed 0.1639 0.2732 0.2739 0.3146
  effect (0.0052) (0.0066) (0.0069) (0.0077)
(ii) Destination 0.0472 0.0861 0.0841 0.0915
  fixed effect (0.0025) (0.0034) (0.0033) (0.0040)
(iii) Distance −1.5704 −1.5389 −1.4352 −1.1873

(0.0044) (0.0066) (0.0067) (0.0098)
(iv) Composition −0.5188 −0.9138 −0.9873 −1.2846
  term (0.0146) (0.0167) (0.0177) (0.0181)
(v) Error term 0.2275 0.4396 0.4128 0.4084

(0.0151) (0.0132) (0.0130) (0.0135)
(vi) Aggregate −1.6505 −1.6538 −1.6517 −1.6574

(0.0195) (0.0196) (0.0196) (0.0196)

Observations 23,597 23,379 23,192 22,417

Notes: Gravity equation estimates of aggregate bilateral 
trade from equation (12) (row vi) and the components of 
aggregate bilateral trade from equation (13) (rows i–v) using 
the CEPII BACI trade database. Coefficients in rows i–v sum 
to the coefficient in row vi. Columns correspond to differ-
ent definitions of sectors. Heteroskedasticity robust standard 
errors in parentheses.
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in equation (11), and estimate separate gravity 
equations for each component, as in equation 
(13). In rows i–v of Table 1, we report the esti-
mated distance coefficient for each component 
for alternative definitions of sectors (across 
the columns). The sum of the coefficients 
for each component across rows i–v equals 
the coefficient for aggregate bilateral trade in  
row vi.

Perhaps unsurprisingly, we find that much of 
the effect of distance on aggregate trade (row vi) 
occurs through the average effect of distance on 
sectoral trade (row iii). Nonetheless, we find a 
substantial negative and statistically significant 
coefficient on our composition term (row iv), 
which ranges from  − 0.5188  using one-digit 
sectors to  − 1.2846  using four-digit sectors. We 
also find positive and statistically significant 
correlations with distance for the origin-sector 
fixed effects (row i), the destination-sector fixed 
effects (row ii), and the error term (row v). This 
pattern of results is consistent with Alchian-
Allen type effects, in which trade relationships 
over longer distances are a selected sample of 
relationships with superior characteristics. The 
net effect of all of these forces is that the ratio of 
the aggregate to the sectoral distance coefficients 
ranges from 1.05 to 1.40, depending on the level 
of aggregation, which highlights the importance 
of compositional differences for aggregate trade 
over long versus short distances.

III. Conclusions

Although the gravity equation is one of the 
most successful empirical relationships in eco-
nomics, existing research provides relatively 
little guidance as to the appropriate level of 
aggregation at which to estimate this relation-
ship. In this paper, we make two main contribu-
tions to this question.

First, we derive an exact Jensen’s inequal-
ity correction term for the nested CES demand 
structure, such that a log-linear gravity equation 
holds exactly for each nest of utility. Second, we 
use this result to decompose the effect of dis-
tance on bilateral trade in the aggregate gravity 
equation into the contribution of a number of 
different terms from gravity equations estimated 
at a more disaggregated level: (i) origin fixed 
effects; (ii) destination fixed effects; (iii) dis-
tance; (iv) our Jensen’s inequality or composi-
tion term; and (v) the error term.

Second, using the aggregate economy and 
sectors as our two nests of utility, we show that 
sectoral composition makes a quantitatively 
relevant contribution to the overall effect of 
bilateral distance on international trade in the 
aggregate gravity equation.

REFERENCES

Allen, Treb, Costas Arkolakis, and Yuta Taka-
hashi.  Forthcoming. “Universal Gravity.” Jour-
nal of Political Economy. 

Anderson, James E. 2011. “The Gravity Model.” 
Annual Review of Economics 3: 133–60.

 Anderson, James E., and Eric van Wincoop. 2003. 
“Gravity with Gravitas: A Solution to the Bor-
der Puzzle.” American Economic Review 93 
(1): 170–92. 

Armington, Paul S. 1969. “A Theory of Demand 
for Products Distinguished by Place of Pro-
duction.” Staff Papers (International Monetary 
Fund) 16 (1): 159–78. 

Bas, Maria, Thierry Mayer, and Mathias Thoenig. 
2017. “From Micro to Macro: Demand, Sup-
ply, and Heterogeneity in the Trade Elastic-
ity.” Journal of International Economics 108:  
1–19. 

Bernard, Andrew  B., Stephen  J. Redding, and 
Peter  K. Schott. 2011. “Multiproduct Firms 
and Trade Liberalization.” Quarterly Journal 
of Economics 126 (3): 1271–1318. 

Berthelon, Matias, and Caroline Freund. 2008. 
“On the Conservation of Distance in Interna-
tional Trade.” Journal of International Eco-
nomics 75 (2): 310–20. 

Combes, Pierre-Philippe, Miren Lafourcade, and 
Thierry Mayer. 2005. “The Trade-Creating 
Effects of Business and Social Networks: Evi-
dence from France.” Journal of International 
Economics 66 (1): 1–29. 

Costinot, Arnaud, Dave Donaldson, and Ivana 
Komunjer. 2012. “What Goods Do Countries 
Trade? A Quantitative Exploration of Ricar-
do’s Ideas.” Review of Economic Studies 79 
(2): 581–608. 

Davis, Donald R., and David E. Weinstein. 1999. 
“Economic Geography and Regional Produc-
tion Structure: An Empirical Investigation.” 
European Economic Review 43 (2): 379–407. 

Eaton, Jonathan, and Samuel Kortum. 2002. 
“Technology, Geography, and Trade.” Econo-
metrica 70 (5): 1741–79. 

081_P20191006.indd   5 3/11/19   1:29 PM



MAY 20196 AEA PAPERS AND PROCEEDINGS

Feenstra, Robert  C., James  R. Markusen, and 
Andrew  K. Rose. 2001. “Using the Gravity 
Equation to Differentiate among Alternative 
Theories of Trade.” Canadian Journal of Eco-
nomics 34 (2): 430–47. 

Head, Keith, and Thierry Mayer. 2014. “Grav-
ity Equations: Workhorse, Toolkit, and 
Cookbook.” In Handbook of International 
Economics, Vol.  4, edited by Gita Gopinath, 
Elhanan Helpman, and Kenneth Rogoff, 131–
95. Amsterdam: Elsevier. 

Head, Keith, and John Ries. 2001. “Increas-
ing Returns versus National Product Differ-
entiation as an Explanation for the Pattern 
of U.S.-Canada Trade.” American Economic 

Review 91 (4): 858–76. 
Krugman, Paul. 1980. “Scale Economies, Prod-

uct Differentiation, and the Pattern of Trade.” 
American Economic Review 70 (5): 950–59. 

Melitz, Marc  J. 2003. “The Impact of Trade 
on Intra-industry Reallocations and Aggre-
gate Industry Productivity.” Econometrica 71 
(6): 1695–1725. 

Redding, Stephen, and Anthony  J. Venables. 
2004. “Economic Geography and International 
Inequality.” Journal of International Econom-
ics 62 (1): 53–82. 

Redding, Stephen  J., and David  E. Weinstein. 
2017. “Aggregating from Micro to Macro Pat-
terns of Trade.” NBER Working Paper 24051.

081_P20191006.indd   6 3/11/19   1:29 PM


