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Abstract

We show that supply-side financial shocks have a large impact on firms’ investment. We
develop a new methodology to separate firm-borrowing shocks from bank-supply shocks using
a vast sample of matched bank-firm lending data. We decompose aggregate loan movements
in Japan for the period 1990 to 2010 into bank, firm, industry, and common shocks. The high
degree of financial institution concentration means that individual banks are large relative
to the size of the economy, which creates a role for granular shocks as in Gabaix (2011). We
show that idiosyncratic granular bank-supply shocks explain 30-40 percent of aggregate loan
and investment fluctuations.
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1 Introduction

Do idiosyncratic bank-loan supply shocks matter for aggregate investment, and if so, how much?
Since the principal reason firms borrow is to finance capital expenditures, this question stands at
the center of debates on the importance of financial shocks for real economic activity. Although
many studies have shown that bank shocks matter for loan supply and certain types of foreign
investment,1 we know little about how important bank-loan supply shocks are in determining the
overall investment rates of their borrowers and aggregate investment more generally. Moreover,
studies of the relative effects of bank shocks on firm investment are hard to link to aggregate
fluctuations. Our study addresses these issues by providing the first estimate of how much “id-
iosyncratic” financial institution shocks (i.e., shocks that are not common to all banks) matter for
overall firm-level and aggregate investment rates and establishes that these shocks are an impor-
tant determinant of both. In order to show this, we develop a new methodology that enables us
to provide the first direct estimates of time-varying firm-borrowing and bank-supply shocks using
a comprehensive, matched, lender-borrower data set covering all loans received from all sources
by every listed Japanese firm over the period 1990 to 2010.

A major challenge in answering this question is to separately identify time-varying bank supply
shocks from firm-borrowing shocks. We make progress in this dimension by developing a method-
ology that generates a unique set of bank and firm shocks (up to a numéraire) that aggregate
exactly to match aggregate bank lending and total firm borrowing. Our method is based on a
linear model that specifies loan growth rates as a function of bank-time fixed effects and firm-time
fixed effects. We show that the bank and firm shocks we identify are appropriate for all models of
lending behavior that specify loan growth from a bank to a firm as a linear combination of a bank
shock, a firm shock and possibly a firm-bank interaction term. Our method produces bank and
firm shocks that are identical to those obtained using weighted least squares when there are no
new lending relationships. However, by exploiting a simple modification of the moment conditions,
our procedure accommodates new lending relationships, producing unique bank and firm shocks
that aggregate to exactly match the macro moments in the data in the presence of new lending
relationships. Critically, we show that the loan growth rates must be defined in percentage terms
and the data weighted by lagged lending in order to match the aggregate data. Any deviation
from this procedure, such as log specifications, different weights, or unweighted estimates, will
result in shocks that do not in general aggregate to the macro data.

The fact that our micro estimates are consistent with macro data allows us to develop a
theoretically sound aggregation method that enables us to apply these estimates to understand
aggregate lending and investment movements. We do this in two ways. First, armed with our
estimates of bank supply shocks from the matched lending data, we exploit the heterogeneity in
the sources of firm financing in order to identify time-varying, idiosyncratic bank-supply shocks

1See, for example, Peek and Rosengren (1997), Peek and Rosengren (2000), Kashyap and Stein (2000), Klein,
Peek, and Rosengren (2002), Paravisini (2008), and Khwaja and Mian (2008)

1



hitting firms. We then use these bank shocks to demonstrate that firms that borrow heavily have
investment rates that are very sensitive to their lenders’ supply shocks. Moreover, we show that
these loan supply channels are important determinants of investment not only in financial crisis
years, but in non-crisis years as well. We show that these firm-level estimates of the impact of bank
shocks on firm-level investment can be consistently aggregated, which enables us to evaluate the
impact of idiosyncratic bank shocks on aggregate investment rates of listed firms. Second, building
on the work of Gabaix (2011), we develop a method for estimating “granular” bank-supply shocks,
which measure the aggregate loan supply movements that arise from the idiosyncratic supply
shocks of large lenders.2 Regressing aggregate lending and investment rates on these granular
shocks provides a second method of evaluating the macro impact of idiosyncratic bank shocks.
Depending on which method one prefers, we estimate the impact of idiosyncratic bank shocks on
the variance of aggregate lending and investment to be 30 to 40 percent for Japan during the
1990-2010 period.

Our work is related to a number of previous studies. Our theoretical setup nests all specifica-
tions that express loan growth rates as a linear combination of bank and firm variables. Often these
models are estimated using a log specification, and we are able to show that regressing log loan
growth rates on explanatory variables produces estimates that predict geometric means of loan
growth rates, but these point estimates do not, in general, aggregate to produce estimates of total
loan growth rates. Another important difference between our approach and the prior literature is
that our estimates of bank shocks incorporate the impact of new lending relationships.

Another major advantage of our approach relative to earlier work is that we are able to es-
timate the shocks directly from the loan data, and hence do not need to rely on instrumental
variables that are correlated with firm-borrowing and bank-supply shocks. These bank-supply
shocks measure idiosyncratic movements of loan supply at the financial-institution level that can-
not be explained by common loan shocks hitting all financial institutions or even by movements in
loan demand from the financial institutions’ borrowers. Moreover, we provide extensive evidence
of the external validity of our estimates. In particular, we show that our estimates capture the
impact of idiosyncratic events such as bankruptcies, capital injections, regulatory interventions,
computer glitches, trading errors, and other proxy variables that previous researchers have thought
important determinants of idiosyncratic bank shocks.

In order to deal with the inevitable issues arising from the use of aggregate data, several authors
have worked with microdata and proxy variables for bank health to demonstrate that bank shocks
can matter for bank lending and certain types of real economic activity. For example, the work of
Peek and Rosengren (1997, 2000), Klein, Peek, and Rosengren (2002), Khwaja and Mian (2008),

2Gabaix (2011) coined the term “granular” because it reflects the fact that firms are not infinitesimal in size. We
use the term in the same sense here to refer to the macroeconomic impact of idiosyncratic bank shocks. If all banks
were infinitesimally small and had uncorrelated idiosyncratic shocks, then these shocks would not be important
for understanding aggregate fluctuations. However, if banks are large or “granular”, idiosyncratic shocks in one or
more large institutions can move aggregate lending.
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Paravisini (2008), Greenstone and Mas (2012), Amiti and Weinstein (2011), Jimenez et al. (2011),
Santos (2012) and Chodorow-Reich (2013) provide bank-level or matched bank-firm level evidence
that deteriorations in bank health or increases in the cost of raising capital cause banks to contract
lending, raise rates, and/or have impacts on foreign markets or employment, but none of these
papers address whether bank-supply shocks affect the overall investment rates of borrowers from
these institutions at the firm or aggregate level. Thus, the question of how much these shocks
matter for investment, and therefore GDP, remains unanswered. Moreover, while the existing
literature makes use of instruments to identify the impacts of particular bank shocks, we are able
to develop a methodology that identifies these bank shocks even in situations where it may not
be possible to have measures of bank health.

Our work is also able to address a major outstanding question in the literature regarding
whether bank shocks matter only following extreme events or for small firms and firms without
access to other sources of capital, or whether credit crunches are a phenomenon with broader
implications. For example, although Ashcraft (2005) found that the failure of healthy bank sub-
sidiaries affected county-level output in Texas, Ashcraft (2006) argues that “these effects are likely
to be very small and unworthy of concern” because “while small firms might view bank loans as
special, they are not special enough for the lending channel to be an important part of how mon-
etary policy works.” These concerns are particularly apt given the evidence that loans and other
types of borrowing are substitutable. For example, Kashyap, Stein, and Wilcox (1993), Kroszner,
Laeven, and Klingebiel (2007), and Adrian, Colla, and Shin (2012) show that some firms are able
to substitute other forms of credit supply in the presence of loan supply shocks, and Khwaja and
Mian (2008) show that bank shocks matter for small but not large firms. On the other hand,
Hubbard, Kuttner, and Palia (2002) stress the difficulties that firms have substituting loans from
one bank with loans from another. Consistent with both sets of studies, we find evidence that
bank supply shocks do not matter for firms that borrow little to finance their capital expenditures.
However, we also show that these bank-supply shocks affect investment rates of those firms that
borrow heavily from banks, and these results are present even for listed firms.

Finally, our paper is also related to the work of Buch and Neugebauer (2011) and Bremus et al.
(2013), who use aggregate bank loan data to construct granular bank shocks and regress them
on cross-country GDP growth. However, our work differs from theirs in a number of respects.
First, rather than ascribing bank shocks to loan growth rate differences across institutions, which
may reflect differences due to heterogeneity in borrower characteristics across banks, our method
allows us to econometrically isolate idiosyncratic bank shocks from firm-borrowing shocks and
time-varying common and industry shocks. This eliminates any worry that an observed correlation
between granular bank shocks and GDP might arise from large banks lending to more procyclical
sectors or any factor that would cause credit demand for large institutions to covary more with
GDP than credit demand for small institutions. Second, since we separate firm-borrowing and
bank-supply shocks, we show that the link from the banking sector to GDP flows directly from
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the affected banks to the investment decisions of their client firms. This enables us not only to
be precise about the mechanism through which GDP is affected, but also to show the relative
importance of the bank-lending channel in understanding investment fluctuations.

The rest of the paper is structured as follows. Section 2 develops the empirical strategy. Section
3 describes and previews the data. Section 4 provides intuition about how our methodology
generates bank shock estimates and investigates their plausibility. Section 5 presents the main
results regarding the impact of idiosyncratic bank shocks on firm-level investment as well as
aggregate investment, and Section 6 concludes.

2 Empirical Strategy

Our econometric approach begins by specifying a fairly general empirical model that we can use
to estimate the importance of each type of shock hitting the economy. In order to simplify the
exposition, we will refer to financial institutions in our data as “banks” even though our data
comprise banks, insurance companies, and holding companies.

2.1 Estimating Firm-Borrowing and Bank-Supply Shocks

Let Lfbt denote borrowing by firm f from bank b in time t. We begin by considering a class of
empirical models in which we can write some measure of the growth in lending, D (Lfbt/Lfb,t−1),
as3

D (Lfbt/Lfb,t−1) = αft + βbt + εfbt, (1)

where αft denotes the “firm-borrowing channel,” βbt the “bank-lending channel,” and the error
term satisfies E [εfbt] = 0.4 Critically, we do not assume that the bank and firm shocks are
independent. The empirical model in equation (1) can easily be understood by contemplating the
standard explanations for what causes lending from a bank to a firm to vary. If lending varies
because of firm-level productivity shocks, changes in factor costs, changes in investment demand,
firm-level credit constraints, etc., we will measure that as arising from the firm borrowing channel,
αft. Similarly, if a bank cuts back on lending because it is credit constrained, we would capture that
in the bank lending channel, βbt. While we remain agnostic about the specific model underlying
what constitutes these shocks, we show in an online appendix that models such as Khwaja and
Mian (2008) can formally be nested in this framework.5

3The most common approach of measuring D (Lfbt/Lfb,t−1) is to define it as the log change in
loans (D (Lfbt/Lfb,t−1) = ln (Lfbt/Lfb,t−1)) but we will also consider the percentage change specification:
D (Lfbt/Lfb,t−1) = Lfbt/Lfb,t−1 − 1.

4We checked for autocorrelation by estimating equation (1) in percentage changes using OLS and regressing the
residual on its lag. We obtain a coefficient of only -0.016 and an R2 of 0.0003. The plot of the residual on its lag
also shows no relationship and is presented in the online appendix.

5It is also possible to show that Chava and Purnanandam (2011) and Greenstone and Mas (2012) can be nested
in this framework.
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One might be tempted to identify bank and firm shocks by simply regressing loan growth,
D (Lfbt/Lfb,t−1), on time-varying firm and bank fixed effects, but there are a number of theoretical
and empirical challenges. The first is identification. The specification in equation (1) does not
allow for bank-firm interaction effects that might arise in the event of moral hazard in lending or
complementarities in bank and firm business lines (see Peek and Rosengren (2005), Jimenez et al.
(2011), and Paravisini, Rappoport, and Schnabl (2015) for examples of these types of models).
This concern raises the question of whether the firm and bank shocks identified from the estimation
of equation (1) are correctly identified even in the presence of bank-firm interaction terms. The
second is aggregation. We need a method to move from bank and firm shocks estimated using
individual loan data to total firm, bank, and economy-wide lending behavior. Third, it is desirable
to have a method that can be applied even in cases where lending relationships can be created or
terminated. We now proceed to deal with each problem in turn.

Let’s begin by thinking about the first problem: identification.6 Equation (1) does not allow
for bank-firm interactions, so one might well question whether our bank and firm parameters are
properly identified even if one believes that the world is better described by a more general class
of interactions that allows for bank-firm interactions. We can write this class of models generally
as

D (Lfbt/Lfb,t−1) = αI
ft + βI

bt + γtZfbt + εI
fbt, (2)

where αI
ft and βI

bt are firm and bank fixed effects (that are possibly different from equation (1));
Zfbt is a bank-firm interaction term; and γt is its coefficient. In an online appendix, we also
show that this equation can be derived from the structure proposed by Paravisini, Rappoport,
and Schnabl (2015) as well as a structural model of loan supply and demand featuring different
interest rates charged to each firm from any given bank. Thus, equation (2) nests much of the
empirical finance literature.

What is the relationship between the bank and firm shocks (α̂ft, β̂bt) identified by estimating
equation (1) with the shocks (α̂I

ft, β̂
I
bt) obtained by estimating equation (2)? In order to answer

this question, it is useful to build some intuition by considering two simple extreme cases. At one
extreme, it is obvious that the two sets of parameter estimates would be identical if the bank-firm
interaction term (Zfbt) is orthogonal to the bank and firm fixed effects. In this case, we could define
εfbt ≡ γtZfbt + εI

fbt, and equation (2) would be identical to equation (1). At the other extreme, if
the bank-firm interaction term were perfectly explainable by bank and firm fixed effects, we would
have Zfbt = δF

ft +δB
bt , where δF

ft and δB
bt are variables that vary only at the firm and bank level. The

parameters in equation (1) and equation (2) would then be related by the following expressions:
6Throughout the paper, we assume that we have a connected set of bank-firm lending relationships, which means

that no set of banks and firms can be partitioned into a nonempty subset in which none of the members of the
subset have relationships with institutions outside of the subset. For example, it cannot be the case that a set of
banks only lend to firms in a given industry and these firms only borrow from this subset of banks. In practice,
this condition is satisfied in the data.
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αft = αI
ft + γtδ

F
ft and βbt = βI

bt + γtδ
B
bt . In this simple case, as long as one defined the firm and

bank shocks as the component in loan variation explainable by firm or bank variation, it would
not matter empirically whether one defined the shocks to be (αft, βbt) or (αI

ft +γtδ
F
ft, β

I
bt +γtδ

B
bt).

In general, neither of these conditions will be satisfied, but we can use the intuition from these
examples to help us understand the relationship between the two ways of measuring shocks in
equations (1) and (2). The key insight is that we can always express the interaction term as
Zfbt = δF

ft + δB
bt + ζfbt. Writing the interaction term this way, however, suggests a simple way of

defining firm and bank shocks such that they are invariant to the inclusion of interaction terms. If
one regressed the interaction term on firm and bank fixed effects one could obtain estimates of δF

ft,
δB

bt , and ζfbt, where ζ̂fbt will be orthogonal to both the firm and bank fixed effects by construction.
Now suppose that instead of running equation (2), one estimated

D (Lfbt/Lfb,t−1) = α∗ft + β∗bt + γ∗t ζ̂fbt + εI
fbt. (3)

Comparing equations (2) and (3), it is immediately apparent that the estimates must satisfy
α̂∗ft = α̂I

ft + γ̂∗t δ̂
F
ft, β̂∗bt = β̂I

bt + γ̂∗t δ̂
B
bt , and γ̂∗t = γ̂t. Since both ζ̂fbt and εI

fbt are orthogonal to the
firm and bank fixed effects, we can always define εfbt ≡ γ∗t ζ̂fbt + εI

fbt, which means that equation
(3) is identical to equation (1) and we have α̂∗ft = α̂ft and β̂∗bt = β̂bt. Thus, as long as one is willing
to define the components of a bank-firm interaction term that vary only at the bank and firm
level (i.e., γtδ

B
bt and γtδ

F
ft), as components of the bank or firm shock, the inclusion or omission of

a bank-firm interaction term will not affect the magnitude of bank and firm shocks.7

We summarize this result in the following proposition, which we prove rigorously in the ap-
pendix:

Proposition 1. In the linear loan growth model with bank shocks, firm shocks, and an interaction
term given in equation (2), WLS estimation of equation (1) and (2) produces identical estimates of
the firm and bank shocks, i.e., α̂I

ft = α̂ft and β̂I
ft = β̂ft as long as the components of the interaction

term that vary only at the bank or firm level are defined to be part of the bank and firm shocks.

Proof. See Appendix A

The intuition for why one obtains identical measures of bank and firm loan shocks in models
7We can see the differences in the procedures by contemplating a simple example. Suppose that the data

generating process is Dfbt = aft + bbt + γtaftbbt + εIfbt, where aft and bbt are firm and bank shocks; Zfbt ≡ aftbbt

is an interaction term; and γt > 0 is a parameter that reflects a tendency for healthier banks to lend more to
healthier firms. We can always rewrite this model as Dfbt =

(
aft + γtδ̂

F
ft

)
+
(
bbt + γtδ̂

B
bt

)
+ γtζ̂fbt + εIfbt, where

δ̂F
ft and δ̂B

bt are the coefficients and error term that arise from regressing Zfbt on firm and bank fixed effects, and
ζ̂fbt ≡ Zfbt − δ̂F

ft − δ̂B
bt. In this case, our estimates of the firm and bank shocks would equal α̂ft =

(
âft + γ̂tδ̂

F
ft

)
and β̂bt =

(
b̂b

bt + γ̂tδ̂
B
bt

)
. Obviously, we cannot recover the estimates of aft and bbt from this procedure. However,

there are advantages of defining the firm and bank shocks as αft and βbt as we do in this paper. In particular, our
definition of the interaction term ζ̂fbt imposes on the data that bank-firm interactions do not affect the aggregate
lending of a bank or aggregate borrowing of a firm—these impacts are defined to be parts of the bank and firm
shocks.
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with and without firm-bank interactions stems from the fact that when one includes an interaction
term, the interaction term is only identified if some component of it is orthogonal to the firm and
bank fixed effects. This is the formal reason why one cannot include a variable that only varies
at the firm or bank level in a fixed effects regression with firm and bank fixed effects. It also
explains why we need to define the firm and bank shocks to be the components of lending that
only vary at the firm or bank level: we need to ascribe any variation in an interaction term that is
perfectly explainable by a firm and a bank fixed effect to a firm and a bank shock. Failure to do so
would result in the possibility of trivially affecting the estimated regression parameters (but not
the fit) by including an “interaction” term that, say, only varied at the firm level. The interaction
term, therefore, only matters if it contains some component that is orthogonal to the fixed effects,
but the orthogonality of the interaction term means that estimation of the fixed effects will be
unaffected by the inclusion of the interaction term. As long as one chooses the same numéraire
(e.g., dropping the same variables in each regression to deal with multicollinearity and attributing
the components of the interaction term that vary only at the firm level or the bank level to the
firm and bank shocks), the estimated firm and bank shocks will be identical regardless of whether
one estimates equation (1) or equation (2). Thus estimation of equation (1) identifies the correct
bank and firm shocks given a common choice of numéraire regardless of whether the true model
is described by equation (2).

Proposition 1 is useful for understanding the role played by bank-firm interaction terms in de-
termining bank and firm loan shocks. While they are important to understanding why a particular
bank lends more to a particular firm than another (i.e., γt 6= 0), bank and firm shocks (βbt and
αft) can be consistently estimated without using any of this information. This motivates working
with equation (1) to obtain the estimates of the bank and firm fixed effects without modeling or
estimating the impact of bank-firm interaction terms.

We now can move to tackle the second problem: aggregation. In order to have estimates of
bank and firm shocks that are going to be useful for understanding macro lending behavior, we
need some way of using these estimates to match the aggregate lending behavior of banks and
borrowing behavior of firms. Our first step towards this goal is to prove a proposition related to
the growth rates of lending for bank-client pairs with positive loans in period t− 1:

Proposition 2. WLS estimation of equation (1) with D (Lfbt/Lfb,t−1) ≡ Lfbt−Lfb,t−1
Lfb,t−1

and Lfb,t−1

weights will produce estimates of bank and firm shocks whose loan-weighted average will exactly
match the bank, firm, and economy-wide loan growth rates of loan relationships that existed in t-1.
No other estimates of bank and firm shocks will satisfy this condition.

Proof. See Appendix B

Proposition 2 establishes that there is unique way to estimate bank and firm shocks such that
they match aggregate loan growth as well as the loan growth of every firm and bank. Proposition
1 tells us that these estimates are also correct even for the class of models featuring firm-bank
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interactions. Taken together, we now have solved the problem of how to estimate firm and bank
shocks in such a way that they aggregate to match the loan growth of pre-existing loans.8 Most
studies use log changes instead of percentage changes as the dependent variable and often use other
weighting schemes. This raises the question of how bank shocks estimated using these alternative
methodologies compare with those generated in Proposition 2. We summarize the properties of
these alternative methodologies in the following proposition:

Proposition 3. OLS estimation of equation (2) with growth rates defined as percentage changes
will yield predicted loan values that exactly match simple averages of individual loan growth rates for
firms, banks, and the economy. WLS estimation of equation (2) using loan growth rates defined as
log changes will yield predicted loan values that exactly match geometric averages of the individual
loan growth rates for firms, banks, and the economy.

Proof. See Appendix C .

Proposition 3 provides a theoretical link between various alternative approaches to estimating
equation (1). While all of these methods can be used to analyze datasets featuring matched firm
bank loan growth data, they differ fundamentally in how the estimates aggregate. To keep our
terminology clear, let’s call Lfbt an “individual” loan, then defining the dependent variable as a
percentage change and using OLS produces estimates that will aggregate to match the simple
average of the loan growth rates of every individual loan made by a bank, received by a firm, and
the economy as a whole. If one weights the data by the lagged loan level (i.e., uses the Proposition
2 method), one will obtain bank- and firm-shock estimates that aggregate to match total firm,
bank, and economy growth rates of pre-existing loans. Similarly, if we define loan growth rates
as log changes with no weighting, we obtain estimates that match the simple geometric averages
of the loan growth rates of every individual loan made by a bank, received by a firm, and in the
economy as a whole. If we weight the log changes by lagged lending we obtain weighted geometric
averages of these loan growth rates.

We now turn to our third problem: the formation and termination of lending relationships.
The termination of lending relationships is a problem when loan growth rates are expressed as
log changes, but not when growth rates are expressed as percentage changes. This means we
can always apply the Proposition 2 methodology if banks just terminate lending relationships but
never form new ones. However, this will not be the case in general. Ideally, we would like a
procedure that generates bank and firm shocks that maintain all the desirable properties of our
estimates obtained in Proposition 2, but can also be applied to datasets in which there is new
lending.

Fortunately, there is a simple correction to the estimates obtained by using the WLS procedure
with loan growth rates measured as percentage changes. As we show in the proof of Proposition

8We thank Benjamin Pugsley and Friederike Niepmann for sharing their insights on how our procedure compares
with WLS.
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1, we can always change the normalization by dropping the first firm and first bank from the
estimation and rewriting equation (1) as:

D (Lfbt/Lfb,t−1) = ct + α̈ft + β̈bt + εfbt (4)

where ct is a time fixed effect, α̈ft ≡ αft−α1t, and β̈bt ≡ βbt−β1t. Appendix B demonstrates that
WLS estimation imposes the following sample moment equation for each firm:9

DF +
ft ≡

∑
b∈Gft

(
Lfbt − Lfb,t−1

Lfb,t−1

)
θfb,t−1 = ĉW

t + ˆ̈αW
ft +

∑
b

θfb,t−1
ˆ̈βW

bt , (5)

where DF +
ft equals the growth rate of borrowing of firm f from all banks that lent it money in

t − 1; ĉW
t , ˆ̈αW

ft , and
ˆ̈βW

bt are the WLS estimates of ct, α̈ft, and β̈bt; Gft is the set of banks lending
to firm f in period t− 1; and

θfb,t−1 ≡
Lfb,t−1∑
b Lfb,t−1

.

Similarly, the moment equation for each bank can be written as:

DB+
bt ≡

∑
f∈Gbt

(
Lfbt − Lfb,t−1

Lfb,t−1

)
φfb,t−1 = ĉW

t + ˆ̈βW
bt +

∑
f

φfb,t−1 ˆ̈αW
ft , (6)

where Gbt is the set of firms that borrowed from bank b in t− 1,

φfb,t−1 ≡
Lfb,t−1∑
f Lfb,t−1

,

and DB+
bt equals the growth rate of lending of bank b to all of its client firms that borrowed in

t− 1.
If we want estimates of bank and firm shocks to aggregate to match total loan growth rates,

not the loan growth rates of pre-existing loans, we cannot use these sample moment conditions.
However, there is a very simple link between total and pre-existing loan growth rates. The total
loan growth rate of a bank (DB

bt) is related to the growth rates for existing loan relationships
(DB+

bt ) through the following equation:

DB
bt ≡

∑
f

Lfbt −
∑

f

Lfb,t−1∑
f

Lfb,t−1
=

∑
f∈Gbt

Lfbt −
∑

f

Lfb,t−1 +
∑

f /∈Gbt

Lfbt∑
f

Lfb,t−1

=
∑

f∈Gbt

(
Lfbt − Lfb,t−1

Lfb,t−1

)
Lfb,t−1∑
f Lfb,t−1

+

∑
f /∈Gbt

Lfbt∑
f

Lfb,t−1

= DB+
bt +DBN

bt

where DBN
bt is new lending by the bank as a share of previous lending. Analogously, we can

9Equations (5) and (6) follow directly from appendix equations (A12), (A17), and (A19). The moment condition
for total loans given in equation (A15) is redundant because if one exactly predicts the growth rate of every bank
and firm, one must match the aggregate loan growth rate.
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decompose total firm borrowing growth (DF
ft) into borrowing growth from banks that lent to the

firm in the previous period (DF +
ft ) and loans from new sources divided by past borrowing (DF N

ft ),
i.e., DF

ft ≡ DF +
ft +DF N

ft .
Thus, the reason WLS estimates do not produce bank shocks that aggregate to match total

loan growth rates of banks and firms is that the WLS moment conditions require the estimated
bank and firm shocks to aggregate in such a way that they match DB+

bt and DF +
ft and therefore

omit the growth of new lending as measured by DBN
bt and DF N

ft . This suggests a very simple
solution to the problem. If we replace the left-hand side of equations (5) and (6) with total loan
growth (DF

ft and DB
bt) instead of loan growth to existing clients (DF +

ft and DB+
bt ), our estimated

parameters will aggregate to match the total loan growth rates of each firm and bank as well as
the economy. Thus, our proposed firm and bank shocks will differ from the WLS ones in that they
aggregate to match total loan growth instead of loan growth to pre-existing clients. We show this
formally in the following proposition:

Proposition 4. If we replace DB+
bt and DF +

ft in moment equations (5) and (6) with the bank’s
total lending (DB

bt) and firm’s borrowing growth rate (DF
ft), the moment conditions become

DB
bt ≡

∑
f

Lfbt −
∑

f

Lfb,t−1∑
f

Lfb,t−1
= ĉt + ˆ̈βbt +

∑
f

φfb,t−1 ˆ̈αft, (7)

DF
ft ≡

∑
b

Lfbt −
∑

b

Lfb,t−1∑
b

Lfb,t−1
= ĉt + ˆ̈αft +

∑
b

θfb,t−1
ˆ̈βbt, (8)

and we can uniquely identify bank and firm shocks whose loan-weighted average exactly match firm,
bank, and economy-wide loan growth rates. These parameter estimates will be identical to the WLS
estimates in the absence of any new lending.

Proof. See Appendix D .

The fact that equations (7) and (8) are identical to equations (5) and (6) except in the way
in which growth rates are computed can provide helpful intuition for the difference between the
WLS procedure given in Proposition 2 and the procedure in Proposition 4. Obviously, if there is
no new lending, the WLS procedure described in Proposition 4 will produce the same estimates
as the Proposition 4 procedure because DB

bt = DB+
bt and DF

ft = DF +
ft and so moment equation (5)

is the same as equation (8), and moment equation (6) is identical to equation (7).
In order to obtain intuition for how the estimates obtained from the procedure presented in

Proposition 4 differs from the WLS procedure of Proposition 2, let’s consider WLS estimates
drawn from the simplest class of cases: those with two firms and two banks and no new lending
relationships. Given that our normalization requires that the bank and firm shocks for the first
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bank and firm are equal to zero (i.e., they are captured in the constant term), we can express the
WLS estimate of the difference between the Bank 2 shock and the Bank 1 shock as10

ˆ̈βW
2t =

(
DB+

2t −DB+
1t

)
− (φ22 − φ21)

(
DF +

2t −DF +
1t

)
1− (φ22 − φ21) (θ22 − θ12) (9)

where we have suppressed the t−1 subscripts on the φ and θ parameters for notational simplicity.
The terms in parenthesis are the difference in the share of lending to Firm 2 from each bank
(φ22 − φ21) and the difference in each firm’s share of borrowing from Bank 2 (θ22 − θ12). Since the
loan share terms are less than one, the denominator must be positive as long as we are not in a
degenerate case in which each firm only borrows from one bank, which would make it impossible to
identify separate bank and firm shocks. Clearly, the partial effect of Bank 2 lending relatively more
(i.e., a rise in

(
DB+

2t −DB+
1t

)
) will result in a larger WLS estimate of a relative bank shock ( ˆ̈βW

2t ),
but the full effect depends both on what is happening to bank lending and the interaction of each
bank’s loan portfolio and (φ22 − φ21) and the relative demands of each borrower (DF +

2t − DF +
1t ).

For example, if Firm 2 borrows more from Bank 2 than Bank 1 (φ22 > φ21), a rise in the relative
growth in the borrowing by Firm 2 (DF +

2t > DF +
1t ) will result in a smaller estimated bank shock

for Bank 2 because a rise in the total borrowing of Firm 2 means that some of the increase in the
differential loan supply growth of Bank 2 should be attributed to Firm 2’s borrowing shock.

Now, suppose that there is some new lending in the economy. Without loss of generality assume
that initially Firm 2 did not borrow from Bank 2, but then started borrowing (i.e., DB

2t > DB+
2t ,

DF
2t > DF +

2t , φ22 = 0, and θ22 = 0). We will also assume that there was no new lending between
other institutional pairs so that DB

1t = DB+
1t and DF

1t = DF +
1t . Our Proposition 4 procedure will

identify the “total” bank shock by replacing the growth rates of pre-existing loans, DF +
ft and DB+

bt

in equations (5) and (6), with DB
bt ≡ DB+

bt + DBN
bt and DF

ft ≡ DF +
ft + DF N

ft . The isomorphism of
equations (5) and (6) with (7) and (8) means that we can write the new estimate of the bank
shock as

ˆ̈β2t =

(
DB

2t −DB
1t

)
− (φ22 − φ21)

(
DF

2t −DF
1t

)
1− (φ22 − φ21) (θ22 − θ12)

=

(
DB+

2t +DBN
2t −DB+

1t

)
− (0− φ21)

(
DF +

2t +DF N
2t −DF +

1t

)
1− (0− φ21) (0− θ12)

= ˆ̈βW
2t + DBN

2t + φ21D
F N
2t

1− φ21θ12
(10)

Comparing equations (9) and (10) reveals exactly how the Proposition 2 WLS estimate differs
from the Proposition 4 estimate. The first line in equation (10) shows that the formula for the
total bank shock equals the formula for the WLS bank shock with the only difference being that
we use total lending growth instead of pre-existing loan growth in the formula. In the second line,

10This equation follows directly from equation (A41).
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we decompose total loan growth into its two components: growth of pre-existing loans and new
loans as a share of pre-existing loans and also impose the condition that Firm 2 did not initially
borrow from Bank 2 (i.e., φ22 = 0, and θ22 = 0). Finally, in the last line we rearrange terms so
that we can express the total bank shock in terms of the WLS estimate of the bank shock, so we
can be clear about examining a case in which there is a new loan.

We can see from equation (10) that the estimate of Bank 2’s shock based on its total lending
will be higher than the Proposition 2 WLS estimate for two reasons. First, if Bank 2 starts a new
lending relationship, it will tend to have a larger estimated bank shock because total lending by
Bank 2 rises by more than loans to pre-existing clients (DBN

2t > 0), and the WLS estimate ( ˆ̈βW
2t )

does not take this into account. The magnitude of the bank shock, will depend not only on Bank
2’s lending but also on the importance of this new source of lending for its new client (DF N

2t ). Bank
2’s bank shock is magnified by the fact that Firm 2 started borrowing from Bank 2 but did not
expand borrowing from Bank 1. This suggests that the reason for Firm 2’s increase in borrowing
is more about a factor affecting Bank 2 than either Bank 1 or itself. Finally DF N

2t is multiplied by
the share of Firm 2’s borrowing from Bank 1. This also is intuitive because if Firm 2 is heavily
dependent on Bank 1 for lending (φ21 is large), but it sources new loans from Bank 2 (rather than
borrowing more from Bank 1), it indicates that the shock to the system was due to a change in
Bank 2’s supply of credit, not a change in Firm 2’s demand.

In Section 4, we provide evidence on the validity of the bank shock estimates we obtain. In
addition to estimating bank shocks using our Proposition 4 methodology, we also show how one
can extend the framework to estimate a simple interaction term that enables bank shocks that
vary by firm. While we know from Proposition 1 that this should not affect our estimates of
the aggregate bank shock, we do consider a specification in which we allow for banks to behave
differentially to different borrowers. For example, in Section 5.2.2 we show that our results are
robust to allowing our estimated shocks to vary with the health of the firm and the bank.

2.2 Decomposing Bank Lending and Aggregate Lending

In the second section of Appendix D , we show that the fact that there is a unique set of firm and
bank shocks that satisfy the adding-up constraints given by equations (7) and (8) enables us to
obtain an exact decomposition of each bank’s aggregate lending into four terms, as follows:11

DBt =
(
Āt + B̄t

)
1B + Φt−1Nt + Φt−1Ãt + B̃t, (11)

whereDBt is a B×1 vector whose elements are each bank’s total loan growth in year t;
(
Āt + B̄t

)
are the median firm and bank shocks in year t, which reflects any shocks that would affect all
lending pairs identically in a year; 1B is a B × 1 vector of 1’s; Nt is a vector containing the
median firm shock in the industry containing the firm; Φt is a matrix that contains as elements

11One could imagine alternative decompositions, but this one expresses loan growth in terms of variables that
have been of particular theoretical interest.
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the weights of each loan to every borrower in time t, i.e.,

Φt ≡


φ11t . . . φF 1t

... . . . ...
φ1Bt . . . φF Bt

 ;

Ãt is a vector with elements α̃ft, each of which equals firm shock in year t less the median firm
shock in that firm’s industry in year t; and B̃t is a vector with elements β̃bt, each of which equals
the bank shock in year t less the median bank shock in that year.12

The key feature of equation (11) is that one can exactly decompose each bank’s loan growth into
four elements. The first term measures “common shocks”: changes in lending that are common to
all lending pairs. These shocks measure any force that would cause all lending to rise or fall by the
same amount (such as due to an interest rate change). The second term is the “industry shock”:
a bank-specific weighted average of the industry shocks affecting each of the bank’s borrowers. It
measures changes in lending that arise because a bank might have a loan portfolio that is skewed
toward borrowers in certain industries. The industry shock captures forces that might cause a
bank’s lending to deviate from the typical bank’s because it specialized in lending to particular
industries. We refer to the third term as the “firm-borrowing shock” or firm shock because it
captures changes in a bank’s lending that arise due to the idiosyncratic changes in borrowing
demand of their clients that cannot be attributed to changes in bank-loan supply.

Finally, the last term captures the idiosyncratic bank-supply shock or “bank shock” because
it measures changes in a bank’s loan supply that is independent of anything related to the firms,
industries, or common shocks hitting the economy. The elements of B̃t equal bank b’s supply
shock in year t less the supply shock of the median bank in that year. Thus, if all banks except
bank b suffered a negative 10 percent shock while bank b had a negative 5 percent shock, this
would be isomorphic in our framework to bank b experiencing a 10 percent positive shock and all
other banks experiencing a positive 5 shock. Since the supply shocks are already purged of all
factors affecting their borrowers, our measure of idiosyncratic bank shocks (β̃bt) reflects what is
happening at each bank relative to the typical bank.

Now that we have developed a methodology for decomposing bank lending into firm, bank,
industry and common shocks, we can turn our attention to the task of understanding how these
shocks affect aggregate lending. In order to do this, we need a little more notation. Let wB

b,t be
the average share of bank b in total lending in year t and define WB,t ≡

[
wB

1t, · · · , wB
Bt

]
. We can

now use equation (11) to obtain

Dt = WB,t−1DBt =
(
Āt + B̄t

)
+WB,t−1Φt−1Nt +WB,t−1Φt−1Ãt +WB,t−1B̃t. (12)

12We could have defined the decompositions in equation (11) using the mean shock instead of the median. We
believe the median is more appropriate because it reflects the shocks affecting the typical bank and firm, and the
mean shock is much more sensitive to extreme shocks hitting small firms, which often experience enormous swings
in borrowing growth. In an online appendix, we show that our results are qualitatively the same whether we define
bank shocks using the mean or median.
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It is worth pausing a moment to contemplate the implications of equation (12). This equation
decomposes aggregate loan growth, Dt, into four terms based on the firm-borrowing and bank-
lending channels. The first term captures the impact of common shocks on aggregate lending by
measuring what happens to the lending of the typical bank-firm pair.13 The second term represents
the “granular industry shock” because it captures the interaction between industry shocks and the
size of the industries. The size of this term will depend on the degree of aggregation used and
the variance of shocks within an industry. The third term is the “granular firm shock” because it
measures the importance of firm-borrowing shocks on aggregate lending. This term will be small
if demand shocks are small or if the loan share of every borrower tends to be small. Finally, we
refer to the last term as the “granular bank shock” because it is a weighted average of all the
idiosyncratic financial institution shocks.

Our decomposition of aggregate lending into the four channels differs in important ways from
other studies. First, prior work on granular bank shocks has followed Gabaix (2011) and assumed
that bank-supply and firm-borrowing shocks are uncorrelated across and between firms and banks.
Equations (11) and (12) are more general in that we only need to assume that these shocks are
not perfectly correlated. Second, the estimates of the bank-lending and firm-borrowing channels
are consistent with the aggregate borrowing by firms and lending by banks.

Granular bank-supply shocks are likely to be particularly important for aggregate lending fluc-
tuations if lending markets are concentrated. The reason stems from the fact that the magnitude
of granular bank-supply shocks depends on two factors: the variance of idiosyncratic bank shocks
(B̃t) and the existence of large financial institutions (i.e. some of the elements of WBt are not
small). As Gabaix (2011) has shown, if all institutions were sufficiently small or if their shocks
were sufficiently small, then one should expect this term to be small because, on average, these
shocks should cancel out due to the law of large numbers. However, as we will see in the next
section, financial institutions are indeed quite large compared to the aggregate loan market and
have loan shocks that are idiosyncratic. These facts explain why we find in our econometric section
that granular bank shocks matter enormously for aggregate fluctuations.

2.3 The Link Between Firm-Level Investment-Rate Regressions and
Aggregate Investment

A related class of problems surrounds how to assess the impact of idiosyncratic bank shocks on
aggregate variables. We propose a “micro” and a “macro” approach. Consider a regression of the
form:

y = XΥ + ε, (13)

where y is the dependent variable whose elements in our case equal the firm-level investment rate
13As we explain in Appendix A, our methodology does not let us separate how much of the common shock is

due to firm-borrowing vs. bank-lending effects. We can only identify the sum of the two effects.
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(Ift/Kf,t−1), where Ift is firm-level investment and Kf,t−1 is the firm-level capital stock; X is a
matrix of explanatory variables; Υ is a vector of parameters; and ε is an iid error term. In order
to keep the discussion related to the literature on assessing the impact of bank shocks on firm-level
investment rates, we should think of the columns of X as containing firm-level variables like cash
flow, Tobin’s Q, and idiosyncratic bank supplyshocks. Moreover, since bank supply shocks might
be correlated with industry and other firm variables, we will need to control for these factors as
well. If we estimate this equation using WLS, the estimated residuals must sum to zero, which
requires that the estimated parameters, Υ̂, satisfy the following sample moment condition:

1′Wy − 1′WXΥ̂ = 0, (14)

where W is a diagonal weighting matrix, and 1 is vector of ones.
It is useful to define the sum of investment over the whole time period as It ≡

∑
f Ift and

the sum of the lag of capital stock in all periods as Kt ≡
∑

f Kft. Thus, the average investment
rate for the economy over this time period is 1

T

∑
t It/Kt−1, where T denotes the number of years.

Suppose we set the diagonal elements of the weighting matrix equal to 1
T
Kf,t−1/Kt−1. In this case

1′Wy will equal 1
T

∑
t

{∑
f [(Ift/Kf,t−1)Kf,t−1/Kt−1]

}
= 1

T

∑
t It/Kt−1 over the sample period.

Thus, there exists a set of WLS parameter estimates (Υ̂) of investment rates that exactly matches
the average aggregate investment rate over all years in the sample. In any time period, t, we can
write the forecast of the investment rate as ŷt (Xt) ≡XtΥ̂, whereXt is the matrix of explanatory
variables corresponding to period t:

X =


X1
...
XT

 (15)

Crucially, while this weighting procedure will produce estimates that match the average ag-
gregate investment rate in the sample over the whole time period, the estimates need not match
the aggregate investment rate in each year. ŷt (Xt) is the theoretically correct way to aggregate
estimates of bank shocks on firm-level investment rates to yield estimates of aggregate investment
rates. The R2 from regressing yt on ŷt (Xt) tells us how well our micro estimates forecast aggregate
investment. This also provides a simple way of assessing the impact of bank shocks on aggregate
investment rates. Let X0

t be equal Xt with all of the idiosyncratic bank shock variables set to
zero. ŷt

(
X0
t

)
, therefore, is a counterfactual prediction of what aggregate investment would have

been if all of the idiosyncratic bank shocks had been zero. If we compare the R2 from regressing
yt on ŷt (Xt) with the the R2 from regressing yt on ŷt

(
X0
t

)
, we can assess how important bank

shocks are for understanding aggregate investment rate fluctuations.
We can now compute two goodness of fit measures that can be informative about how much

idiosyncratic bank shocks affects investment rates. The R2 that arises from equation (13) tells us
how well we fit the investment behavior of each firm. However, if we are interested in how well
we fit the aggregate investment behavior, we want to know the R2 from regressing yt on ŷt (Xt).
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The R2 from the firm-level regression need not be informative about the R2 from the aggregate
regression if, for example, there is a lot of idiosyncratic firm-level variation in investment rates
that cancels as we aggregate.

One problem with this micro approach is that it can only be applied to a dataset in which we
observe all of the firm-level variables contained inX. Given that we only observe investment rates
and lending to listed firms, we may also want a method that lets us understand how idiosyncratic
bank shocks affect investment rates for the much broader sample of firms comprising the entire
economy. In order to assess this, we can also conduct a macro approach that entails regressing
the economy-wide investment rate on the granular lending shock terms given in the right-hand
side of equation (12). Since the idiosyncratic bank shocks that make up the granular term are
estimated using firm-time fixed effects, they should not be affected by changes in firm loan demand.
Therefore, by varying whether we include the granular bank shock term in this macro regression,
we can assess how much of the variation in economy-wide investment rates is due to granular bank
shocks.

3 Data Description

3.1 Data Construction

Our data come from four sources. First, we use matched bank-firm loan data from Nikkei NEEDS
FinancialQUEST for the period 1990 to 2010. Nikkei reports all short-term and long-term loans
from each financial institution for every company on any Japanese stock exchange, which we sum
to obtain total loans: 272,302 loans in total. Our definition of a “bank” covers all Japanese city,
trust, regional, mutual banks, and insurance companies, as well as Japanese holding companies.
We include loans from all financial institutions, except for the eleven that are government banks
or cooperatives. We dropped loans from government institutions such as the Development Bank
of Japan and the Norinchukin Bank because we wanted to focus our results on the impact of
bank-supply shocks arising from private institutions on aggregate lending.14 Our loan measure is
the total borrowing from a given bank in a year, comprising all loans received from each bank for
870 to 1,633 firms per year.15 Our data cover loans from finance, insurance, and financial holding
companies to manufacturing, mining, agriculture, and services (except finance and insurance). We
divide the industries using the JSIC 2-digit codes, comprising 78 industries.

In general, the Japanese fiscal year runs from April in year t to March in year t+1. More than
80 percent of the firms report annual loan data for the fiscal year ending in March, and the rest
of the firms report loans ending in one of the other months. For most of our analysis, we include
only firms that report for the year ending in March so that a year is defined over the same time

14We show in an online appendix that our results are robust to excluding firms that borrow from these banks.
15The loan data do not distinguish between new loans and rolling over of existing credit lines. Our identification

strategy does not depend on how banks restrict lending.
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period for all of our firms.16 We refer to years ending in March 31 as a “fiscal year” and denote
such years by the prefix “FY” to distinguish them from calendar years. Because nine months of
any fiscal year occur in the previous calendar year, one should remember that a fiscal year tends to
refer to information that is lagged by one year relative to a calendar year. For example, Hokkaido
Takushoku Bank, which failed in November 1997, fails in FY1998 because the 1998 fiscal year
closes in March 1998.

One difficulty working with these data is tracking mergers and restructurings. Whenever a
bank ceases to exist, due to either bankruptcy or merger, firms will cease reporting that bank
as a source of loans. We investigated every bank in order to see if there was any report in the
media of a bankruptcy or merger. If we could not find any report, we assumed that the zero loan
data were accurate, but if we could find evidence of a failure or a merger, we recorded the date.
Since firms sometimes reported loans coming from a restructured bank as coming from the prior
institution, we recoded these loans as coming from the restructured institution if they occurred
after the restructuring. In order to compute the loan growth of a new institution, we had to keep
track of all the institutions that predated it. Thus, if Banks 1 and 2 merged in year t to form Bank
3, Bank 3’s loans in year t− 1 would be set equal to the sum of the loans of Banks 1 and 2, and
the growth rate would be computed accordingly. Since we could trace the evolution of hundreds
of banks in our data, we do not have any gaps associated with mergers. The entry of new banks
is easy to incorporate as well because all new banks emerge in our sample as the result of mergers
or the restructuring of existing institutions.17

A related issue concerns the definition of a bank. In general, we erred on the side of assuming
that institutions changed whenever an institution was nationalized or privatized. For example,
Long-Term Credit Bank failed in 1998 and then, after an interval of nationalized control, reopened
as Shinsei Bank in 2000, so the bank appears in our data as different institutions for each of these
periods: LTCB, “Nationalized LTCB,” and Shinsei Bank. Similarly, bank lending activity does
not change as the set of listed firms changes because we do not include a firm in our dataset in
year t unless it has positive borrowing in year t − 1. Thus, if a firm is newly listed in year t, we
only consider its contribution to aggregate loan growth from t to t + 1. This procedure prevents
us from erroneously attributing loan growth to a change in our sample due to an increase in the
number of listed firms.

To ensure sufficient observations to estimate the bank shocks, we keep only bank-year pairs
that have a minimum of five loans in both t and t − 1. This procedure dropped 0.6 percent of
the observations. The number of banks in the sample ranges from 101 to 166 depending on the
year, with a smaller number of banks in the later period resulting from the wave of mergers in the
2000s.

16Our results are robust to the inclusion of all months.
17The aggregate loan growth rate we estimate is the loan growth rate to listed firms that borrowed any positive

total amount in period t− 1. All exits are incorporated.

17



The second source of data is the Development Bank of Japan (DBJ) database of unconsolidated
reports, which provides information on a wide range of firm characteristics. We use information
on investment, capital, total borrowings, bonds, cash, total assets, and the firm’s book value for
our analysis (while the market value is from Nikkei). Our measure of investment is constructed
as the annual difference in total tangible fixed assets plus depreciation, and the market-to-book
value is the ratio of market value to shareholder equity.

Finally, we draw on two sources of aggregate information on economy-wide borrowings and
investment-to-capital ratios. The flow-of-funds data from the Bank of Japan website provide data
on the stock of lending to private nonfinancial corporations from private financial institutions.18

The economy-wide investment-to-capital ratio data are measured in 2000 yen for fiscal years 1990
to 2010 from the National Accounts, Economic and Social Research Institute, Cabinet Office. The
summary statistics are reported in Appendix E.

Figure 1: Flow of Funds and Nikkei Debt
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3.2 Data Preview

In this section, we highlight some key patterns in the data. First, we show that the pattern
of aggregate lending from our firm-level data exhibits similar year-to-year fluctuations as those
from the official economy-wide statistics, demonstrating the plausibility of using information on
listed companies as a means of understanding aggregate fluctuations. Even though lending to
listed nonfinancial firms in the Nikkei data accounts for only 17 percent of aggregate lending to

18The borrowing data are from the Bank of Japan website. The series number is FF’FOF_FFYS411L240.
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nonfinancial enterprises in 1990 and 18 percent in 2010, the aggregate lending to listed companies
from our firm-level data exhibits a similar pattern as commercial lending in the broad economy.

Figure 1 plots the annual percent change in loans to nonfinancial enterprises using the flow-of-
funds lending data and the annual percent change in aggregate loans to nonfinancial enterprises
from the Nikkei firm-level database. As can be seen from this graph, aggregate corporate loans
track that of listed companies extremely closely, with a correlation of 0.8. The figure makes clear
that corporate borrowing fell off sharply as the bubble burst in FY1990. By FY1995, the growth
rate of lending became negative and remained so for a decade.

Figure 2: Flow of Funds and Aggregate Investment
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Second, we show a clear positive association between economy-wide nonfinancial corporate
borrowing and economy-wide investment in the data. Figure 2 indicates that the growth rate
in the stock of lending to private nonfinancial corporations from private financial institutions
using the flow-of-funds data tracks the aggregate investment-to-capital ratio fairly closely. The
correlation between the two series is 0.72, illustrating the tight relationship between borrowing
and investment.

Third, a critical feature of our identification strategy is the exploitation of the fact that
Japanese listed companies typically borrow from a large number of banks. Figure 3 presents
a histogram of the number of institutions providing loans to each firm. The median firm borrowed
from seven banks and 97 percent of the firms in our sample borrowed from more than one.19

19This is in sharp contrast with the data underlying Khwaja and Mian (2008) in which only 10 percent of the
firms borrowed from more than one bank.
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Moreover, since the average firm’s borrowing Herfindahl index averaged 0.17, we know that the
typical firm spread its borrowing out relatively evenly across many banks.20

Figure 3: Distribution of Number of Loans per Firm
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Finally, we need to show sufficient “granularity” in the financial sector so it can plausibly be
argued that shocks to major banks in Japan are large enough that an idiosyncratic shock at one
of them, such as the failure of Long-Term Credit Bank, might actually move a macroeconomic
aggregate. Figure 4 shows a breakdown of total lending by bank. For each year, we depict
individual loan shares of every bank with a loan share exceeding one percent of aggregate lending
to listed companies, and group those with a market share of less than one percent into the shaded
region.

As the figure shows, Japanese finance has always been dominated by relatively few financial
institutions. In FY1990, the three largest Japanese banks accounted for 23 percent of aggregate
lending to listed companies, and this number rose to 54 percent in FY2010, with the largest
financial institution, Mitsubishi UFJ Financial Group (MUFG), accounting for 21 percent of all
Japanese lending.21 The concentration in lending in the world’s second largest economy at the
time provides the basic motivation for our suggestion that idiosyncratic bank shocks might have

20The firm borrowing Herfindahl index (= 1
Ft

∑
f

∑
b (Lfbt/

∑
b Lfbt)2) measures how concentrated each firm’s

borrowing is on average. A Herfindahl index of 1 arises if firms only borrow from one institution. A Herfindahl
index of zero would arise if each firm spreads its borrowing evenly across an infinite number of banks.

21As Amel et al. (2004) show, the growth in merger activity in Japan’s banking and insurance industry was quite
similar to that in other industrial countries. The increase in concentration in Japanese finance between FY2000 and
FY2010 was driven by deregulating laws related to the formation of holding companies in 1997 and, as Sakuragawa
and Watanabe (2009) argue, the 2002 “Takenaka Plan,” which forced more disclosure of nonperforming loans
(resulting in mergers of weak institutions).
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Figure 4: Bank Concentration
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macroeconomic implications. If banks are large relative to the size of the economy, idiosyncratic
shocks to particular institutions could move macro aggregates if firms have difficulty substituting
between different sources of finance.

Interestingly, Japan’s high levels of concentration do not make the country an outlier. For
example, in the U.S., most major lenders are bank holding companies, which in 2010 jointly
accounted for 79 percent of all assets held by commercial banks, thrifts, and credit unions.22

Federal Reserve data indicate that the three largest institutions in the U.S.—Bank of America,
JP Morgan, and Citigroup—held 49 percent of all banking assets.23 This number is remarkably
close to the 54 percent number in our Japanese sample. Similarly, Buch and Neugebauer (2011)
calculate bank Herfindahl indexes for many western European countries that are similar to those
we obtain for Japan. Therefore, any observed large impact from idiosyncratic bank shocks in Japan
cannot be attributed to a more concentrated banking sector than in other countries. Rather, the
high degree of financial market concentration appears to be a feature of many developed countries.

22Federal Financial Institutions Examination Council (2011) Annual Report 2010, March 31.
23The bank asset numbers come from the Bank Holding Company Performance Reports, which are available on

the National Information Center website:
(http://www.ffiec.gov/nicpubweb/content/BHCPRRPT/BHCPR_Peer.htm).

21



4 Estimating the Bank Shocks

Before turning to our main results on the impact of idiosyncratic bank shocks on investment,
we explore in this section the unique features of our methodology and conduct some external
validation tests of our bank shock estimates to ensure that our point estimates are reasonable. We
first examine how our estimates compare with standard fixed-effects estimates. Then, we explore
the external validity of our estimates by checking that they are correlated with conventional
measures of bank shocks.

4.1 Comparing Estimation Methods

We have already discussed how our approach is related to OLS, WLS and various other specifica-
tions in theory. We now turn to assessing how much these differences matter in practice. In order
to establish a baseline to understand how much our procedure improves the fit relative to OLS,
we first estimate equation (1) using OLS fixed effects to obtain estimates of the firm and bank
shocks and then sum them across all client firms to obtain the bank’s growth rate.24 We then
can see how well the fixed-effects procedure works by comparing a bank’s actual loan growth, DB

bt,
with the predicted values, D̂B

bt. We know from Proposition 3 that these parameters will aggregate
to match the unweighted average bank loan growth rate. The question we now address is how
informative is the average loan growth rate for understanding a bank’s total loan growth rate.
The results from this exercise suggest that using fixed effects to identify the bank-lending channel
produces estimates that are almost uncorrelated with actual bank-loan growth. If we regress the
bank’s predicted loan growth from the OLS regression on the actual growth, we obtain an R2 of
only 0.08. We plot these data in Figure 5 to show that this result is not driven by a particular
institution. By contrast, if we implement our Proposition 4 methodology, the R2 is equal to one
by construction. This establishes that one needs to be quite cautious about using econometric
specifications aimed at matching average growth rates to infer what is happening in aggregate at
any given bank.

As we showed in Proposition 3, a log-change specification will produce estimates that aggregate
to match the geometric average of the growth rate of each loan made by a bank (omitting the
zeros). It is an empirical question whether this will provide parameter estimates that more closely
match total bank lending. Replacing the dependent variable in equation (1) with the log change
in loans in the OLS specification does not do much to improve the fit of equation (1)—the R2 from
regressing the fitted values of aggregate bank lending on actual bank lending rises to 0.25, which
still leaves most of aggregate bank lending unexplained. In other words, bank and firm shocks
obtained from a log change specification also do not do well to predict aggregate loan growth
behavior.

24Formally, the predicted value of a bank’s loan growth is D̂B
bt =

∑
f∈Gbt

(
ĉt + ˆ̈αft + ˆ̈βbt

)
, where the definitions

of all of these parameters are given in Appendixes A and B.
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Figure 5: Predicted Bank Loan Growth Using OLS vs. Actual
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Note: Predicted values are based on OLS estimates of equation (1) with loan growth expressed in
percentage changes.

Figure 6: Predicted Bank Loan Growth Using Weighted Least Squares vs. Actual
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Note: Predicted values are based on weighted least squares estimates of equation (1) with loan
growth defined as percentage changes, which are then aggregated according to right-hand side of
equation (6).

The next step is to see how much the fit improves if we continue with the log specification
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but estimate equation (1) using weighted least squares. It is common to weight the data in a log
specification by the size of the loan, Lfb,t−1. As Proposition 3 proved, this produces parameter
estimates that aggregate to match the weighted geometric average of the growth rate of each loan
made by a bank. Again, it is an empirical question how much this improves the fit. We find that
using a weighted log specification only raises the R2 to 0.36. Thus, the difficulty of identifying
what is happening at the bank from individual loan information is not easily solved by using a
weighted log specification.

Proposition 2 demonstrated that WLS estimates of equation (1) with the dependent variable
defined as a percentage change in loan growth and using Lfb,t−1 weights produces bank and firm
shock estimates that exactly match a bank’s loan growth rates of pre-existing loans (DB+

bt ). Propo-
sition 4 shows that WLS produces identical parameter estimates as our preferred methodology if
there is no new lending, i.e., DB+

bt = DB
bt. If new lending is not important, it would be the case

that WLS would produce very similar estimates as our Proposition 2 method. We assess this
in Figure 6, where we plot the estimates of bank loan growth produced by WLS estimation of
equation (1) (i.e., DB+

bt ) against total bank loan growth (DB
bt). We see that the WLS estimates

systematically underestimate bank loan growth by sometimes fairly large margins because all new
lending activity is omitted. Regressing the WLS fitted values of a bank’s total loans on the actual
values (DB

bt) produces an R2 of only 0.51, with a slope of 0.54, which indicates that about half
of the variance in total bank loan growth comes from new loan relationships: a source of growth
omitted from the WLS specification.

Figure 7: Impact of New Lending on Bank Shock Estimates
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bt ) in equation (10) . New bank
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A related question concerns how the estimates of bank shocks are affected by the inclusion
of new lending by banks. We saw from equation (10) that the Proposition 4 estimates of bank
shocks ( ˆ̈βbt) tend to be larger than WLS estimates ( ˆ̈βW

bt ) when, ceteris paribus, new lending as
a share of total lending is high. We can see this effect very clearly in Figure 7, which plots the
difference between our preferred estimates of bank shocks and the WLS estimates ( ˆ̈βbt − ˆ̈βW

bt )
against new lending activity (DBN

bt ). As the econometric theory suggests, there tend to be very
small differences in the two sets of estimates when banks do not engage in much new lending
activity, but the shocks can differ by a magnitude of two or more for banks that make a lot of new
loans. Similarly, if we regress the bank shocks estimated using weighted least squares ( ˆ̈βW

bt ) on
bank shocks computed using our approach ( ˆ̈βbt), we obtain an R2 of only 0.59 and a coefficient of
0.57. Intuitively, the WLS estimates tend to be biased downwards because they do not incorporate
bank shocks that result in new loans. Taken together, these results suggest that using estimates
that do not aggregate and ignoring new lending activity produces noisy and biased bank shock
estimates.

4.2 External Validity of Bank Shock Estimates

While our methodology generates estimates that match aggregate data by construction, we also
would like some reassurance that they make sense. One way to evaluate how reasonable our
estimates are is to look at their values in situations where we have a strong prior for what they
should be. We pursue this in three ways. First, we examine extreme financial events affecting
institutions (e.g., bank failures) and see what types of bank shocks we estimate. Second, we look
at extreme bank shock estimates and examine if anything unusual happened to the institution.
Third, in order to provide systematic evidence for the validity of our bank shock estimates, we
examine whether they are consistent with proxy measures of bank shocks used in prior studies.
We consider each in turn.

4.2.1 Extreme Events and Estimates

We have a strong intuition that financial institutions dramatically curtail lending when they are
on the verge of failure. This result is clearly apparent in the bank-shock measures. Financial
institutions that entered bankruptcy, as opposed to merging or receiving capital injections when
financially stressed, had a mean and median idiosyncratic bank shock in the year of their failure
of -9 percent. Some of the major institutions that failed had even larger negative shocks. For
example, we estimate Long-Term Credit Bank (at the time, the ninth largest bank in the world)
and Nippon Credit Bank had idiosyncratic bank shocks of -22 percent and -34 percent, respectively,
in the years that they failed. Similarly, extreme falls in an institution’s market capitalization are
also associated with negative bank shocks in the following year. For example, institutions whose
market-to-book value change was in the bottom five percent of all institutions in that year, on
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average, had idiosyncratic bank shocks of -2.8%. Conversely, banks that received capital injections
typically had positive bank shocks of 6.5%.

A second way of examining the plausibility of our estimates is to see what happened in the
institutions with extreme bank shocks. Obviously, there are too many bank shocks to discuss each
in detail, but we document what events preceded the ten largest contributors to the granular bank
shock in the online appendix. A financial institution’s contribution to this channel is wb,t−1β̃bt

(see equation (12)), which weights each bank’s shock by its lagged share in lending. These ten
shocks were preceded by some of the most memorable anecdotes of the period—results of FSA
investigations into illegal activities, a computer programming error that paralyzed a bank’s ATM
network, capital injections, and rogue traders—which suggests that we are correctly identifying
the impacts of idiosyncratic factors that affected the loan supply of particular institutions.

4.2.2 Consistency with Prior Research

This sort of validation is based on a small sample and hard to use as a general test of validity.
Fortunately, much of the existing empirical literature analyzing bank channels is explicitly or
implicitly based on the structure contained in equations (1) and (6), which lets us test whether our
bank shock measures are significantly correlated with the proxy variables used in prior studies.25

In other words, we can test whether our bank-shock estimates are in line with their hypotheses
about what moves the bank-lending channel.

In order to see the link, we need to draw out the relationship between our framework and that
in some previous studies. Since the econometrician does not observe βbt and αft, prior studies
have typically identified the bank channel by identifying a proxy variable, pbt, which is assumed
to be correlated with the bank channel, βbt, but not with αft or εfbt in equation (1) in order to
estimate ∆ lnLfbt = γpbt + αft + εfbt or DB

bt = γpbt +∑
f φfb,t−1αft +∑

f φfb,t−1εfbt. In both cases,
the coefficient of interest (γ) depends crucially on the cov (pbt, βbt), i.e., the extent to which the
proxy variable (pbt) actually covaries with the bank shock (βbt).26

Although allowing proxy variables to stand in for bank shocks does not allow for the identifi-
cation of βbt, existing empirical papers tell us how much particular proxy variables (e.g., capital
adequacy ratios, market-to-book values, government credit supply, etc.) matter for lending. These
studies have advantages when researchers can identify cases in which virtually all of the mean-
ingful variation in lending behavior arises from some factor that only affects the bank. The main
problem with this approach is that the use of proxy variables may not tell us about the many other
types of bank shocks—arising from revelations of illegal activities, good or bad management, com-
puter errors, etc.—that could also matter for lending. Nevertheless, if our identification strategy
is correct, bank shocks in our data should be correlated with the proxy variables proposed in other

25For example, Chava and Purnanandam (2011) is explicitly based on equation (1).
26Formally, we need the residual from projecting the proxy variable (pbt) on the firm fixed effects to be correlated

with βbt.
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studies. To put this more concretely, since we have estimates of βbt and can observe the proxy
variables, we can regress one on the other and test whether the assumed correlation is significant.

One of the most commonly used proxy variables is the risk-based capital ratio (cf. Peek and
Rosengren (1997, 2000, 2005) and Amiti and Weinstein (2011)). These authors argue that, in the
aftermath of the bursting of the Japanese land and stock bubbles, banks with low levels of capital
adequacy were forced to cut back on lending. In other words, these studies are based on the idea
that corr (βbt, RCRbt) > 0, where RCRbt denotes the risk-based capital ratio of a bank. Similarly,
Montgomery and Shimizutani (2009) have argued that the capital injections implemented between
1997 and 1999 should have caused bank lending to rise in recipient banks (because they had more
capital) and therefore should be positively correlated with bank shocks. In other words, their study
is based on the assumption that corr (βbt,CapitalInjectionbt) > 0. Finally, several of these studies
have also argued that deteriorations in a bank’s market-to-book value in a crisis, ∆MTBbt−1,
should lead to lower bank lending, and thus corr (βbt,∆MTBbt−1) > 0.

In Table 1, we examine each of these correlations using roughly the same time periods as the
earlier papers. It is reassuring to see that our estimated bank shocks are correlated with proxy
variables in just the way that previous authors have suggested: risk-based capital ratios, capital
injections, and changes in market-to-book values are all positively correlated with our bank-supply
shock measures. Thus, we can formally reject the hypothesis that our estimates of movements in
the bank lending channel are uncorrelated with actual movements.

However, it is important to also realize that, while prior work was limited to tracing out the
impacts of shocks that can be tied to these proxy variables, our methodology enables us to examine
the magnitude and impacts of all bank-supply shocks. Indeed, the low R2’s in Table 1, suggest
that the typical proxies used in the literature only capture a small part of the total variation in
bank supply shocks. This is not surprising because the few events that enable the identification
of γ are infrequent and only account for a small fraction of all idiosyncratic bank shocks.

5 Main Results

Armed with our estimates of idiosyncratic firm and bank shocks, we now turn to understanding
the importance of these bank shocks for lending and investment behavior. Prior work in this
area has not had a firm-specific, time-varying measure of credit constraints and therefore has
focused on whether the cash-flow sensitivity of investment for some classes of firms differs from
that of others. As we have argued earlier, a major advantage of our approach is that we have
estimates of time-varying firm-borrowing and bank-supply changes. We will examine three paths
into this problem. First, in Section 5.1 and Section 5.2 we show that idiosyncratic bank shocks
have a statistically significant impact on firm-level investment. Second, in Section 5.3.1, we show
that the estimates from these firm-level regressions imply that idiosyncratic bank shocks have
substantial effects on aggregate investment for this sample of firms. Finally, in Section 5.3.2,
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Table 1: Validation of Bank-Supply Shocks

Dependent Variable: Bank Shockb,t (1) (2) (3)

Risk-Based Capital Ratiob,t 0.015***

(0.004)

Capital Injectionb,t 0.085***

(0.019)

∆ ln(Market-to-Book Valueb,t- 1) 0.075**

(0.032)

Year Fixed Effects Yes Yes Yes

Observations 657 405 843

R
2

0.037 0.030 0.012

Notes: The risk-based capital ratio in Column 1 is the combined Tier 1 and Tier 2 risk-based capital conforming to
the Basel II agreement. These data are from Peek and Rosengren (2005). In Column 2, the regressor is a dummy
variable equal to 1 if bank b received a capital injection in year t as in Montgomery and Shimizutani (2009). In
Column 3, the market-to-book value is computed as the average of the monthly share price multiplied by the
number of shares outstanding and divided by the book value of its equity. We take the 12-month log difference
of this variable. We drop the top and bottom one percentiles for bank-supply shocks and log differences of
market-to-book value. These data were taken from Nikkei and from the Pacific Basin Capital Markets database.
Huber-White heteroskedasticity robust standard errors in parentheses. ***p<0.01, **p<0.05,*p<0.1.

we demonstrate the granular shocks we derived in Section 2.2 can explain large fluctuations in
economy-wide investment rates.

5.1 Idiosyncratic Bank-Supply Shocks and Firm-Level Investment

Equation (8) provides a structure for measuring the impact of bank shocks on firm borrowing
because the summation term on the right-hand side captures the impact of idiosyncratic bank
supply shocks on the firm’s ability to borrow from banks.27 The fact that not all firms borrow
from all banks means that if loans from different banks are not good substitutes, a bank-supply
shock from one bank will have a bigger impact on the investment of firms that borrow relatively
more from it. To put it concretely, we use equation (8) to define the aggregate idiosyncratic
bank-supply shock hitting a particular firm as

27The normalization in equation (8) is different from that in equation (11), which is why one expresses the
idiosyncratic bank shock as ˆ̈βbt and the other as β̃bt, but as we show in Appendix 6, these two parameter estimates
just differ by a constant.
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BankShockft =
∑

b

θfbt−1β̃bt. (16)

Our empirical exercise will then test whether this variable matters for firm-level investment.
Table 2 presents our findings. In the first column of Table 2, we regress the firm’s investment

rate (investment divided by lagged assets) on the standard variables (cash flow and the market-
to-book value) in which we also control for firm fixed effects and year fixed effects to sweep out
any factors related to our sample of firms or correlations between firm-level investment and any
common time-varying shock to the investment rate.28 Not surprisingly, we find the standard
result that there is a positive association between a firm’s investment rate and its cash flow
and market-to-book value. In Column 2, we add in our industry shock variable to see if the
variation in investment-to-capital ratios of a given firm is also associated with the typical change
in firm-borrowing shocks within an industry. We find a positive and significant coefficient on
the industry-borrowing shocks, which implies that many of the investment opportunities faced by
individual firms are are specific to firms in a particular industry. These might be exchange rate
movements that affect firms in export sectors differently from those in other sectors, or any of a
host of possible variables that matter at the industry level.

The most interesting results, however, are those reported in Columns 3 to 6 of Table 2, where
we add our idiosyncratic firm and bank shock variables to the specification. Since the firms in our
sample are all listed nonfinancial firms that have access to both equity and bond markets, it makes
sense to consider the impact of a firm-borrowing or bank-supply shock as having a different impact
on a firm that borrows a lot from banks to finance its investment relative to a firm that finances
investment through other means. In other words, a given bank shock is likely to have a much
larger impact on the investment rate of a firm that finances, say, 80 percent of its capital through
bank loans than on a firm that finances only 1 percent of its capital from loans. Therefore, in
addition to including the firm and bank shocks in the specification, we also include their interaction
with the firm’s mean loan-to-asset ratio over the sample period.29 Column 3 of Table 2 shows
that the coefficient on the bank shock entering alone is negative and significant while that on the
interaction term is positive and significant, indicating that loan-dependent firms’ investments are
affected by idiosyncratic bank shocks.30 In contrast with prior work on small firms, our results
suggest that even listed companies, who by definition have access to non-bank financing such as
equity, are affected by loan supply shocks. Interestingly, we find that negative idiosyncratic bank
shocks exert a positive impact on the investment of firms that do not rely much on loans for their
financing needs, which may reflect the fact that firms that don’t rely much on loans for finance

28We only include tangibles in our measure of investment and capital expenditures. Adding in intangibles, which
account for, on average, three percent of total investment, leave the results unchanged.

29We cannot include the mean loan-to-asset ratio independently because we are already using firm fixed effects.
30The R2 is not affected much by adding the bank shock variable, but, as we will see, this does not mean that

bank shocks are not economically significant determinants of investment. The reason that the R2 does not change
much is that there is a large amount of noise in firm-level investment data. As we will see, this noise tends to cancel
as we aggregate across firms.
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Table 2: Firm-Level Investment Rate Regressions

Cash Flowf,t /Capitalf,t -1 0.048*** 0.047*** 0.047*** 0.047*** 0.048*** 0.048***

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Market-to-Book Valuef,t -1 0.011*** 0.011*** 0.011*** 0.011*** 0.012*** 0.012***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Bank Shockf,t -0.151*** -0.149*** -0.110**

(0.048) (0.053) (0.047)

(Bank Shockf,t ) x 0.732*** 0.730*** 0.809***

(Mean Loan-to-Asset Ratiof ) (0.202) (0.204) (0.199)

(Bank Shockf,t ) x 0.105***

(Bin1f,t ) (0.037)

(Bank Shockf,t ) x 0.005

(Bin2f,t ) (0.048)

(Bank Shockf,t ) x -0.088*

(Bin3f,t ) (0.051)

(Bank Shockf,t ) x -0.040

(Mean Bond-to-Asset Ratiof ) (0.463)

Firm Shockf,t 0.013** 0.014**

(0.006) (0.006)

(Firm Shockf,t ) x 0.245*** 0.242***

(Mean Loan-to-Asset Ratiof ) (0.043) (0.043)

Industry Shockf,t 0.070*** 0.069*** 0.069*** 0.067*** 0.042***

(0.017) (0.017) (0.017) (0.017) (0.005)

Fixed Effects

Year yes yes yes yes yes yes

Firm yes yes yes yes yes yes

Observations 21,701 21,701 21,701 21,701 21,701 21,701

R
2

0.307 0.307 0.308 0.308 0.323 0.323

(6)
Dependent Variable: 

Investmentf,t /Capitalf,t -1

(1) (2) (3) (4) (5)

Notes: Standard errors (clustered by firm) are in parentheses. ***p<0.01, **p<0.05, *p<0.1. We drop
the top and bottom one percentiles of each variable. The mean loan-to-asset ratio is defined for each firm
as its average ratio of loans to assets over the sample period. The mean bond-to-asset ratio is similarly
defined. Bin 1: mean loan-to-asset ratio > 0.14; Bin 2: mean loan-to-asset-ratio ∈ [0.08, 0.14]; Bin 3: mean
loan-to-asset-ratio < 0.08.
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actually benefit relative to other firms when credit conditions tighten.31

One concern about these results is that firms with access to forms of capital other than loans
may be less susceptible to bank-supply shocks. Our results probably underestimate the effects of
bank shocks because we are working with a sample of firms that all raise capital through equity
markets. Within this sample, we have already noted that the effect of bank-supply shocks is most
keenly felt by firms that, on average, finance a lot of their assets through loans. However, it might
be the case that firms that also raise a lot of financing from bond markets are even less susceptible
to bank-supply shocks. In Column 4, we interact the bank shocks with the firm’s mean bond-to-
asset ratio to see if firms that rely more on bond financing have less sensitivity to bank shocks.
If this were the case, one would expect to see a negative coefficient on the bond interaction term.
The fact that we do not find a significant coefficient on the bond interaction term suggests that
the firm’s loan share is the critical determinant of a bank shock on a firm’s investment. While
access to the bond market might serve to lower the importance of loans as a source of finance,
conditional on a given loan share of financing, we obtain equally strong estimates of the impact
of bank-supply shocks on firms with and without high levels of bond finance.

Another possible concern is that bank shocks and firm shocks are correlated. For example, if
firms that tend to have positive loan demand shocks also borrow from banks that tend to have
positive supply shocks, then regressing firm outcomes on just the average bank shock will suffer
from an omitted variable bias. For our sample of firms, adding firm-borrowing shocks in Column
5 hardly affects the coefficients on the bank shocks. The positive coefficient on the firm shock
interacted with the mean loan-to-asset ratio implies a strong association between firm-borrowing
shocks and investment for firms that are highly loan dependent, but not for firms that do not
finance much of their capital expenditures through loans. The positive association almost surely
arises because, in equilibrium, factors that raise a firm’s marginal product of capital also raise
its demand for borrowing. However, whether we control for this factor or not does not affect the
strong relationship between bank shocks and firm-level investment.32

The findings in the baseline specification in Column 5 of Table 2 imply a positive relationship
between idiosyncratic bank shocks and investment for firms with loan-to-asset ratios above 0.14
(around 60 percent of firms in our sample). Meanwhile, for firms below the 0.14 threshold there is
either no relationship or, if anything, a negative relationship between bank shocks and investment.
Another way to see this is in Column 6, where we divide the mean loan-to-asset ratio into three
bins, which we interact with bank shocks. The first (high) bin includes all firms with mean loan-
to-asset ratios above 0.14, bin 2 (medium) with those between 0.08 and 0.14, and bin 3 (low)
with those less than 0.08. The coefficient on the bank shocks interacted with the high dummy is
positive and significant at 0.1; for those interacted with the medium dummy it is zero; and for the

31This result is a feature of the model in Buera, Fattal-Jaef, and Shin (2013).
32The results are robust to clustering at the firm level and to clustering by the largest bank in the firm’s bank

shock, as we show in Columns 1 and 2 in Table A2 in the online appendix.
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bank shocks interacted with the low dummy it is -0.09.
These results therefore tend to bridge the gap between studies using matched bank-firm data

and extreme events that find a strong relationship between idiosyncratic bank shocks and real eco-
nomic activity (e.g., Klein, Peek, and Rosengren (2002), Amiti and Weinstein (2011), Chodorow-
Reich (2013)) and those that suggest firms can circumvent these shocks by accessing bond and
other markets (e.g., Adrian, Colla, and Shin (2012)). Our results intuitively indicate that bank
shocks matter for firms that are heavily dependent on loans, but less so for firms that are not
dependent on loans. One implication of these findings is that loan-dependent firms cannot easily
substitute towards other funding sources when the banks they rely on for financing cut back on
their lending supply.33

5.2 Robustness

In this section, we conduct a number of robustness tests aimed at understanding whether our
results are affected by lagging the firm shock, changing the set of independent variables, adjusting
the sample period, and allowing for evergreening (troubled banks lending more to troubled firms).
In addition, in an online appendix, we consider a number of additional robustness checks: changing
the clustering of standard errors, lagging bank shocks, and dropping firms that receive government
loans. None of these robustness checks qualitatively affect the results.

5.2.1 Lagged Firm Shocks and Sample Periods

Our results are robust to a number of alternative specifications. One concern might be that past
firm-level shocks might be driving current bank shocks. In order to verify that this is not driving
our results, in Column 1 of Table 3, we include lagged firm shocks and find that its coefficient is
close to zero and its inclusion hardly affects the other coefficients. In Column 2, we include only
the bank shock terms and the industry effects to see if the exclusion of all potentially endogenous
variables affects the results. We find that the coefficients are almost unchanged.

Similarly, one might wonder if our results are driven only by crisis years, defined as FY1991,
FY1993, FY1998, and FY2009. In Column 3, we interact the bank shocks with a crisis dummy,
and find that there is no significant difference between crisis and non-crisis years.34 Finally, in
Columns 4 and 5, we divide the sample into two halves (FY1991–FY2000 and FY2001–FY2010)
to see if the coefficients differ between the early years, when bank failures were frequent, and the

33One reason why firms may not substitute to other forms of financing is that that idiosyncratic bank shocks are
not persistent. If we regress the bank shock on its one-period lag, with bank fixed effects, the coefficient is only
-0.08 (t-stat of 3.5) with an adjusted R2 equal to 0.03. Thus, unless firms can rapidly shift from banks that exhibit
negative shocks, there is little value for them to do so since a negative shock in one year is not associated with a
negative shock in future years.

34The first years are the same as those dropped in Amiti and Weinstein (2011) because they correspond to
the year of the initial bursting of the Japanese stock market bubble, the year when the jusen (housing finance
companies) began failing, and the year when the first major banks began failing. The last crisis year corresponds
to the first year of the more recent financial crisis.
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Table 3: Firm-Level Investment Robustness

(1) (2) (3) (4) (5) (6)

Cash Flowf,t /Capitalf,t -1 0.045*** 0.048*** 0.164*** 0.042*** 0.047***

(0.011) (0.009) (0.019) (0.010) (0.008)

Market-to-Book Valuef,t -1 0.013*** 0.012*** 0.009*** 0.014*** 0.012***

(0.002) (0.002) (0.003) (0.003) (0.002)

Bank Shockf,t -0.112** -0.148*** -0.105* -0.086 -0.058 -0.101**

(0.048) (0.047) (0.054) (0.081) (0.070) (0.043)

(Bank Shockf,t ) x 0.760*** 0.692*** 0.898*** 0.886*** 0.624** 0.633***

(Mean Loan-to-Asset Ratiof ) (0.213) (0.202) (0.218) (0.328) (0.298) (0.178)

Crisis x (Bank Shockf,t ) 0.000

(0.108)

Crisis x (Bank Shockf,t ) x -0.418

(Mean Loan-to-Asset Ratiof ) (0.486)

Firm Shockf,t 0.015** 0.013** -0.002 0.017** 0.014**

(0.007) (0.006) (0.010) (0.008) (0.006)

Firm Shockf,t- 1 0.008**

(0.003)

(Firm Shockf,t ) x 0.246*** 0.245*** 0.388*** 0.227*** 0.240***

(Mean Loan-to-Asset Ratiof ) (0.046) (0.042) (0.084) (0.054) (0.042)

Industry Shockf,t 0.075*** 0.082*** 0.067*** 0.097*** 0.050** 0.063***

(0.024) (0.017) (0.017) (0.030) (0.024) (0.017)

Fixed Effects

Year yes yes yes yes yes yes

Firm yes yes yes yes yes yes

Observations 18,656 21,701 21,701 9,595 12,106 21,681

R
2

0.307 0.291 0.323 0.391 0.378 0.323

ever-

greening

Dependent Variable: 

Investmentf,t /Capitalf,t -1
lagged firm 

shock

only bank 

shock

with crisis 

interaction
1991-2000 2001-2010

Notes: Standard errors (clustered by firm) are in parentheses. ***p<0.01, **p<0.05, *p<0.1. Column (3)
interacts the bank shockswith crisis years (1991, 1993, 1998, 2009). Column (4) uses a restricted sample
from 1991-2000, and Column (5) uses a sample restricted to 2001-2010. We drop the top and bottom one
percentiles of all the variables. Column (6) uses an alternative formulation of the bank shock in which we
allow the same bank to supply credit differently to healthy and unhealthy firms. Distressed firms are defined
as in Hoshi, Kashyap, and Scharfstein (1990) as firms with net interest payments above operating income in
years t and t-1, but not in year t-2. The results are similar if we define distressed as just having operating
income below net interest payments in the previous year.
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later years. We find that bank shocks are significant determinants of investment in both periods
and that the point estimates do not change significantly in the subsamples. Because we obtain
our results for two non-overlapping subsamples, we can be confident that no single event or year
is driving our results.35

5.2.2 Differential Shocks to Healthy and Unhealthy Firms

It is reasonable to explore if there are ways to adapt the Proposition (4) to allow for specifications
in which we explicitly allow for non-homotheticities. A number of papers (e.g. Peek and Rosengren
(2005), and Jimenez et al. (2011)) have found that weak banks not only lend less but lend relatively
less to healthy firms in times of trouble, a practice known as “evergreening”. Although this is not
the main focus of our paper, we can also check if our results are robust to allowing banks to pass
along their shocks more to healthy firms than to unhealthy ones. A simple way to nest the insights
of these papers into our framework is to postulate that a bank’s supply shock differs depending on
whether the client is healthy or not. We follow Hoshi, Kashyap, and Scharfstein (1990) in defining
unhealthy firms as previously healthy firms whose interest payments exceed their operating income
for two consecutive years.

If we split our sample according to whether the firms are healthy or not, we can obtain different
estimates of β̃bt for healthy firms and unhealthy ones. In order to keep the notation simple, let β̃H

bt

be the bank shock we obtain using loan data for healthy firms and β̃U
bt to be the bank shock we

obtain when we only include the unhealthy firms. Define LH
bt and LU

bt to be bank b’s total lending
to healthy and unhealthy firms, respectively. We now can define the overall bank shock to be

β̄bt ≡
LH

b,t−1β̃
H
bt + LU

b,t−1β̃
U
bt

LH
b,t−1 + LU

b,t−1
. (17)

If we believe that evergreening causes unhealthy banks to lend more to unhealthy firms, then
we should expect that β̃U

bt > β̃H
bt when β̄bt < 0. This is, in fact, exactly what we find in the

data. The mean value of β̃U
bt − β̃H

bt for relatively unhealthy banks is 0.06 (s.e. 0.11), indicating
that relatively troubled banks lent six percent more to unhealthy firms than healthy firms after
controlling for their loan demand.36 Interestingly, we also find that relatively healthy banks, i.e.
those institutions with bank shocks above the median lent 5.1 percent less to unhealthy firms
(s.d. 1.2 percent), confirming the findings of Peek and Rosengren (2005) that the provision of
more credit to unhealthy firms is something that unhealthy banks do, but healthy banks actually
readjust their lending portfolios away from their worst clients.

35Table A2 in the online appendix provides additional robustness checks of our baseline results, where we also
add in lagged bank shocks in Column 3, drop firms with government loans in Columns 4 and 5, and use loan shocks
constructed with weighted least squares in columns 6. Further, in Table A5, we show that our idiosyncratic bank
shocks are important determinants of firm-level employment and sales.

36Because our bank shocks were estimated off a smaller sample (especially for the unhealthy firms), we had more
outliers in our estimates. Therefore, we trimmed the top and bottom 5% of values of β̃U

bt and β̃H
bt before computing

the mean.
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Of course, our main concern is not whether we can use our methodology to replicate the
results of other papers, but whether allowing banks to have different lending policies for healthy
and unhealthy firms affects our main result. In order to do this, we redefined our bank shock
variable to be ∑b θfbt−1β̃

h
bt, where h = U if the firm is unhealthy and h = H if the firm is healthy.

This enables us to allow a bank’s shock to vary depending on both the health of the bank and
the health of the borrower. We report the result of using this regression in the last column of
Table 3. The coefficient on the bank shock terms are not significantly different than those in our
main specification, which indicates that our assumption that all of a bank’s borrowers receive a
common bank shock is not driving our results.

5.3 How Much do Idiosyncratic Bank Shocks Matter for Investment?

Our firm-level investment regressions indicate that idiosyncratic bank shocks matter statistically
for investment, but they do not tell us how much they matter economically. The simplest way to
assess the economic magnitude is to compute a beta coefficient for the impact. For example, let’s
consider a firm with a loan-to-asset ratio at the 75th percentile (i.e., a loan-to-asset ratio of 0.28).
Since the standard deviation of the bank shock is 0.05, this implies that this firm would result in
a shift in a firm’s investment rate of [(-.11 + 0.809*0.28)*0.05 =] 0.006. Given that the median
investment rate is 0.08, this is equivalent to a 7 percent decline in the the firm’s investment rate.
If banks were severely stressed, the impact would be much larger. This type of calculation is a
reasonable “proof of concept”—bank shocks can matter for investment—but it is very hard to
assess what this type of calculation tells us about the importance of these shocks for aggregate
fluctuations.

Similarly, we see from Table 2 that although the idiosyncratic bank shock terms are very signif-
icant statistically, the R2 in the regression does not change much with their inclusion. One possible
interpretation of this result is that idiosyncratic bank shocks do not matter much economically.
Another interpretation is that the error terms in the firm-level investment equation cancel as we
aggregate, rendering idiosyncratic bank shocks an important determinant of aggregate investment.
We assess these two hypotheses in the next two sections.

5.3.1 Micro Estimation

Section 2.3 shows that if we weight the investment rate regression by the firm’s lagged assets we
obtain estimates that aggregate to match the average aggregate investment rate over the whole
time period but will not necessarily match the investment rates in each year (It/Kt−1). Thus
by choosing whether to include the bank shock variables in the construction of the predicted
investment rate ( ̂It/Kt) and seeing how this choice affects the R2 of a regression of the investment
rate on its predicted value, we can assess the importance of these bank shocks on aggregate
investment fluctuations.
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Table 4: Weighted Firm-Level Investment Rate Regressions

Cash Flowf,t /Capitalf,t -1

Market-to-Book Valuef,t -1

Bank Shockf,t

(Bank Shockf,t ) x

(Mean Loan-to-Asset Ratiof )

Firm Shockf,t

(Firm Shockf,t ) x

(Mean Loan-to-Asset Ratiof )

Industry Shockf,t

Common Shockt

(Mean Loan-to-Asset Ratiof )

Firm Fixed Effects

Observations

R
2

(i) (ii) (iii) (iv)

with without with without

bank shocks bank shocks bank shocks bank shocks

1.378*** 0.891*** 1.272*** 0.937***

(weighted fitted values) (0.170) (0.237) (0.117) (0.194)

Observations 20 20 20 20

R
2 0.786 0.439 0.867 0.563

0.012***

(0.033)

0.155**

(0.067)

0.073***

(0.019)

(0.048)

0.443***

no

0.227

9 21,619

0.395

0.177***

(0.028)

(0.003)

0.019***

(0.022)

0.153***

0.019*

(0.011) (0.010)

(0.068)

0.162**

1.310***

(0.076) (0.076)

-0.105***

Dependent Variable: 

Investmentf,t /Capitalf,t -1

Dependent Variable: Investmentt /Capitalt -1 

0.017*

1.432***

(0.264)(0.290)

0.0840.099

(0.003)

(0.051)

0.507***

(0.025)

0.080***

(1) (2)

yes

(I𝑡/K𝑡−1)   

Note: Estimation based on the procedure described in Section 2.3.
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Table 4 presents the results from estimating the weighted firm-level investment rate regres-
sion.37 The parameter estimates are qualitatively the same in the weighted regression as in the
unweighted regression. Idiosyncratic bank shocks clearly matter for firms that borrow heavily,
thus, weighting the data does not seem to qualitatively affect our results. Since we have weighted
the regression appropriately, we know that the predicted values of the investment rate averaged
over all years must match the actual average aggregate investment rate, but this need not be the
case for any individual year. Therefore, if we regress It/Kt−1 on its predicted value ( ̂It/Kt−1), we
can assess how much of the actual variation in aggregate investment rates can be explained by
different firm-level models of investment rates. As one can see by comparing the R2 in the lower
panel of the table, the inclusion of the bank shock variables in the predicted values raises the R2 by
0.30 in the specification without firm fixed effects (the difference in R2 between Columns i and ii)
and 0.35 in the specification with firm fixed effects (the difference in R2 between Columns iii and
iv). In other words, the firm-level regressions imply that between 30-35 percent of the variation
in aggregate investment behavior of listed firms can be explained by idiosyncratic bank shocks.
These results provide strong evidence that these shocks matter substantially at the aggregate level.

5.3.2 Macro Estimation

One of the limitations with the results presented so far is that they are based on a sample of
listed firms. The loan data in our sample of firms account for only around 17 percent of total
lending in Japan in an average year. One might reasonably wonder if the bank shocks we have
identified off this sample of firms can help us understand economy-wide lending and investment.
Since our methodology allows us to identify a pure idiosyncratic bank-supply shock that controls
for borrower demand, the measure of granular bank shocks should be the same for the whole
economy.

The starting point for thinking about the aggregate impact of Japanese lending is to realize
that if we were to regress the left-hand side of equation (12) on each of the right-hand side terms,
we would obtain coefficients of one on each term since the equation is an identity. However,
this need not be the case if we replace the dependent variable with economy-wide aggregate loan
growth from the flow-of-funds data. In this case, we can write the relationship between the
percentage change in aggregate lending and the percentage change in lending to listed companies
as DF OF

t = WB,t−1DBt + εt, or

DF OF
t = δ + γ1

(
Āt + B̄t

)
+ γ2WB,t−1Φt−1Nt + γ3WB,t−1Φt−1Ãt + γ4WB,t−1B̃t + εt. (18)

37We had to drop the year fixed effects in order to implement this procedure because if we included them the
predicted values of the aggregate investment rate would match the actual values in each year. As one can see from
online appendix Tables A3 and A4, dropping the year fixed effects in the unweighted specification has little impact
on the remaining point estimates, so our results are not dependent on this minor change in specification. Instead
of including year effects, we include the common shock to absorb economy-wide movements in lending.

37



If we estimate equation (18), we will only obtain coefficients of one on each term if each of the
terms we measured using the Nikkei data equals the terms for the whole economy and the error
term is uncorrelated with any of the explanatory variables. The coefficient of interest is γ4, which
tells us whether aggregate lending is associated with granular bank shocks. Measurement error
or economy-wide variables that move more or less than the corresponding variables in the Nikkei
data could cause the coefficients to differ from one. Moreover, to the extent that one thought that
economy-wide lending behavior and loans to listed companies were uncorrelated, one might expect
to see a low R2 from estimating equation (18). Finally, even if we were to obtain coefficients equal
to one using flow-of-funds data, it could be the case that granular bank shocks are sufficiently small
that we obtain much smaller regression coefficients when executing a regression on standardized
variables because a one-standard-deviation movement in granular bank supply might have a very
small impact on aggregate lending. In other words, we can interpret the coefficients on each of
these terms as the contribution of each variable to the flow-of-funds lending growth, while the error
term corresponds to deviations in aggregate loan growth from loan growth for listed companies.
Our interest is in trying to understand how important the terms we identified in equation (12) are
in determining aggregate loan fluctuations.

Figure 8: Granular Bank Shocks
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Notes: Years refer to fiscal years, which roughly correspond to the calendar year plus one.

Figure 8 plots the granular bank shocks over our sample period. It is important to remember
that these shocks are not the shocks to the entire banking sector (which are captured in the common
shock), but instead, they represent the differential shocks to large institutions, resulting from the
accumulation of idiosyncratic shocks hitting large lenders. Nevertheless, the largest movements in
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the series have a straightforward interpretation. In FY 1997, we see a big positive shock, which
follows Prime Minister Hashimoto’s 1996 “Big Bang” financial reforms, paving the way for bank
holding companies. We see a large negative granular bank shock in FY1998, which corresponds
to the year in which the failure of Hokkaido-Takushoku Bank sent a shock wave through the
Japanese banking system due to the willingness of the government to allow a major bank to fail.
In 1998 (FY1999), large banks were given capital injections. If these policy interventions induced
more lending, we would expect to see that these large institutions lent more. This is precisely
what we see in the figure where we observe a big positive granular bank shock in 1999 (FY2000).
The second largest granular bank shocks occur in FY2003 and FY2004 in the aftermath of the
Takenaka Plan’s forced disclosure of banks’ nonperforming loans in 2002. The biggest negative
granular bank shock is also easy to understand. It occurs in 2008 (FY2009): the same fiscal year
as the Lehman bankruptcy. It is reasonable to suspect that the global financial meltdown in 2008
had a worse impact on large Japanese banks than on small ones who probably were much less
exposed internationally. This may explain why there is a large negative granular bank shock in
FY2009.

In Table 5, we regress aggregate lending growth from the flow-of-funds data on the various
components of lending growth that we identified from the Nikkei matched bank-firm data. As
one can see in the first two columns of the table, aggregate lending can only be well explained
if we include the (idiosyncratic) granular bank shocks.38 Interestingly, while common, industry,
and granular bank shocks have coefficients close to one in Column 2, the granular firm shock is
attenuated, perhaps because while we have all of the large banks in our sample, we do not have
unlisted firms, and hence there is more measurement error in the granular firm shock variable.
Moreover, as we show in an online appendix, had we used the bank shocks using the Proposition
2 WLS methodology the explanatory power of the granular bank shocks in explaining bank lend-
ing would have been significantly reduced, presumably because these estimates do not take into
account new lending activity.

Movements in aggregate lending are closely correlated with the forces we identified in the
Nikkei sample. When we include all regressors in the sample, the R2 is 0.8, suggesting that most
of what drives aggregate commercial lending is explainable by the factors we identified in the
Nikkei sample. Moreover, the coefficients on the common shock, industry shock, and granular
bank shock in Column 2 are statistically indistinguishable from one, which is the value that would
obtain if these variables had been computed using data from all Japanese lending pairs. In other
words, the data do not reject the hypothesis that the common, industry, and granular bank shocks
identified in the Nikkei data are the same as those we would find in economy-wide data.

However, our main interest is in understanding the importance of the granular bank shock
term. One metric of its importance is to consider how much of the variance in aggregate lending

38Alternatively, we could merge together the effects of the industry and firm shocks. This does not qualitatively
affect the coefficients on the bank shock variable.
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Table 5: Aggregate Effects

Dependent Variable:

(1) (2) (3) (4) (5) (6)

Common Shockt 0.492* 1.212*** 1.196*** 0.206** 0.475*** 1.274***

(0.261) (0.182) (0.180) (0.094) (0.113) (0.303)

Industry Shockt 0.513 1.391*** 0.595*** -0.117 0.211 0.246

(0.329) (0.275) (0.118) (0.183) (0.192) (0.223)

Firm Shockt 0.215 0.318** 0.257** -0.037 0.001 0.003

(0.145) (0.144) (0.117) (0.079) (0.060) (0.132)

Bank Shockt 1.170*** 1.042*** 0.437*** 1.057***

(0.232) (0.207) (0.124) (0.300)

Constant -0.018* -0.003 0.000 0.076*** 0.081*** 0.000

(0.009) (0.006) (0.118) (0.004) (0.004) (0.144)

Standardized Variables No No Yes No No Yes

Observations 20 20 20 20 20 20

R
2

0.420 0.782 0.782 0.303 0.675 0.675

Percentage Change in Flow of Fundst Investmentt /Capitalt- 1

Notes: Huber-White heteroskedasticity robust standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1.
All variables, including percentage change in the FOF and aggregate investment, are standardized in (3) and (6)
with a mean of 0 and a standard deviation of 1. The sample is for the 1991-2010 period. The Breusch-Godfrey
LM test for autocorrelation could not reject the null of no autocorrelation.

it explains. Comparing columns 1 and 2, we see that adding the granular bank shock term raises
the R2 of the regression by 0.36. The fact that the granular bank shock term is highly significant
and moves the R2 of the regression substantially strongly suggests that the idiosyncratic lending
decisions of large financial institutions have a large impact on aggregate lending. In Column
3 of Table 5, we run a standardized regression in order to examine the relative importance of
movements in the granular bank shock for understanding aggregate movements. Not surprisingly,
we get a coefficient indistinguishable from one on the common shock term, indicating that a
one-standard-deviation increase in lending observed in the Nikkei data is associated with a one-
standard-deviation-increase in lending in Japan. What is most surprising is the importance of the
granular bank shock term: a one-standard-deviation movement in this term is also associated with
a one-standard-deviation movement in aggregate lending. This indicates that aggregate loan supply
is also highly sensitive to bank shocks. In an economy composed of small financial institutions,
this term would likely be zero, but the fact that it is so large implies that much of aggregate
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lending is explainable by the loan supply movements of large institutions.39

We have seen that the variation in the granular bank shock is an important component of
aggregate lending volatility. We now turn to estimating the impact of bank shocks on aggregate
investment activity in columns 4 through 6. Our results from the previous sections have already
established exogeneity of the bank shocks, a strong relationship between firm-level investment and
bank shocks, an economically meaningful link between aggregate investment by listed firms and
their bank shocks, and a tight link between aggregate lending and granular loan shocks. Moreover,
we also know from Table 4 that idiosyncratic bank shocks account for 30-35 percent of variation
in total investment among listed firms. Our next question is whether these granular bank shocks
cause movements in aggregate investment in the Japanese economy as a whole.

In Table 5 we explore the relationship by regressing the Japanese economy-wide aggregate
investment rate on the granular bank shocks. By construction, any common shock to a firm’s
investment demand will be captured in our common shock term; therefore, the granular bank
shocks cannot be caused by these common shocks. The granular bank shock term in Column 5 is
strongly significant and raises the R2 of the regression from 0.303 to 0.675, which indicates that
these bank shocks also account for 37 percent of the fluctuations in aggregate investment. In other
words, granular shocks—idiosyncratic movements in lending to a given borrower by large banks
relative to small banks—are closely associated with aggregate investment movements. Our macro
estimate is surprisingly close to the 30-35 percent improvement in fit we obtained by aggregating up
the bank shocks in the firm-level investment rate regressions. Despite the differences in samples and
methods, we obtain very similar estimates of the impact of idiosyncratic bank shocks on aggregate
investment in Tables 4 and 5. In terms of economic significance, we see in Column 6 of Table 5,
where we run a standardized regression, that a one-standard-deviation movement in the granular
bank shock moves the aggregate investment-to-capital ratio by one standard deviation—about as
much as common shocks.40

Since we control for the firm-borrowing shocks when estimating the bank shocks, the granular
bank shocks are macro variables that are not determined by fluctuations in borrower demand.
The fact that they matter so much for investment suggests that the strong, causal link between

39In Table A7 of the online appendix, we reproduce Table 5 using bank shock estimates based on the Proposition 2
WLS procedure instead of our proposed Proposition 4 methodology. The principle difference in the two procedures
is that the Proposition 4 methodology produces estimates that aggregate to match total lending growth. We
can see the problem with the WLS estimates when we try to replicate Table 5 using WLS estimates instead of
the Proposition 4 estimates. If we include all the variables except the bank shocks both methods account for
approximately the same amount of aggregate variance (the R2 is 0.420 using the Proposition 4 methodology and
0.455 using the Proposition 2 WLS methodology). However, granular bank shocks have much more explanatory
power when they are computed using the Proposition 4 methodology relative to the Proposition 2WLS methodology.
The latter approach only raises the R2 by 0.2 whereas our preferred methodology raises it by 0.36. In other words,
using bank shocks based on total lending by a bank (i.e., Proposition 4) rather than lending to existing clients
(Proposition 2) enables us to explain over 75 percent more variation in aggregate lending. This establishes the
importance of accounting for new lending when estimating the impact of granular shocks on aggregate lending.

40The results are qualitatively similar if we redefine the granular bank shock relative to the simple mean (see
Table A4 in the online appendix).
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loan supply and firm-level investment that we identified in Tables 2, 3, and 4 matters at the
aggregate level as well. In sum, the results from the micro and macro estimation both indicate
that substantial amounts of aggregate investment can be explained by idiosyncratic bank shocks.

6 Conclusion

In this paper, we develop a new methodology that enables us to estimate bank-loan and firm-
borrowing shocks using a fixed-effects approach that enables researchers to directly apply estimates
obtained from matched bank-firm data and firm-level investment regressions to understanding
aggregate lending and investment behavior. We relate our new methodology to existing methods.
We show that log specifications produce estimates that match geometric means of disaggregated
lending behavior, but they do poorly in matching aggregate lending. Our method is identical to
WLS fixed effects methodology when the dependent variable is defined as a percentage change and
there are no new lending relationships. Importantly, our approach enables researchers to estimate
bank shocks even when new loan relationships form.

We estimate time-varying bank shocks, firm-borrowing shocks, industry shocks, and common
shocks using matched firm-bank loan data for Japan between 1990 and 2010. This decomposition
enables us to establish a causal relationship between idiosyncratic bank-supply shocks and firm-
level investment for those firms that are loan dependent. We find that idiosyncratic bank supply
shocks are significant determinants of firm-level investment. This result is particularly surprising
because our sample is comprised of listed companies that have, by definition, access to equity
markets. Most importantly, we show that idiosyncratic bank-supply shocks have large effects on
firm-level and economy-wide investment.

The fact that banks are large even relative to the largest economies is at the heart of the
underlying mechanism for these results. The bank data in most industrial countries show that
the distribution of banks is highly skewed, with a small number of large banks accounting for a
large share of aggregate lending. For example, in Japan the three largest banks account for a 45
percent share of total banking assets.41 Because there is “granularity” in the banking data, the
law of large numbers does not apply, rendering firms vulnerable to the fates of individual banks.
Indeed, we show that the bank shocks account for 30 to 40 percent of the variation in Japanese
aggregate lending and investment.

There are a number of implications from this study. First, our results imply that it is difficult
for firms to substitute between loan sources in response to short-term changes in credit. Although
the median number of bank loans per firm is seven in our sample, idiosyncratic shocks to large
banks still have significant effects on these firms’ investment. Second, the fates of large financial
institutions are an important determinant of investment and real economic activity. Although our
study has relied on Japanese data, the key elements of the banking system that underlie these

41http://research.stlouisfed.org/fred2/series/DDOI01JPA156NWDB
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results are also prevalent in other industrialized countries, thus making it likely they would also
be present in other countries. Analyzing the importance of idiosyncratic bank shocks in other
countries is potentially a fertile area for future research.
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Appendix A: Proof of Proposition 1

The proof is easiest if we rewrite equation (2) in vector form so that we can be explicit about how
the dummy variables enter into the equation:

D+
t = Ftα

I
t +Btβ

I
t +Ztγt + ηt, (A1)

where D+
t is a vector whose elements equal D (Lfbt/Lfb,t−1), i.e., the set of loan growth rates

computed for all loans satisfying Lfb,t−1 > 0 if loan growth is measured in percentage changes
and Lfbt > 0, Lfb,t−1 > 0 if they are measured in log changes; and Ft = (F1t, · · · , FFt) and
Bt = (B1t, · · · , BBt) are matrices whose columns are given by the fixed effects, Fft and Bbt, the
elements of these columns equal one whenever firm i = f or bank j = b and equal zero otherwise;
Zt is a vector of containing a firm-bank interaction variable, γt is the coefficient on the interaction,
and ηt is a mean zero error.

Estimation requires us to make a few normalizations. First, since ∑f Fft = ∑
bBbt = 1, we

can drop one firm and one bank fixed effects without affecting the predicted values. Moreover, we
can trivially cause the estimated coefficients to vary by changing which bank and firm we drop, so
we want to be consistent about our choice of numéraire across specifications. We therefore rewrite
this expression as

D+
t = 1c̈t + F̈tα̈t + B̈tβ̈t +Ztγt + ηt, (A2)

where c̈t is a time-varying parameter that captures the common shocks to lending; F̈t and B̈t only
differ from the variables without umlauts in that the first column has been dropped and

α̈t =


αI

2t − αI
1t

...
αI

F t − αI
1t

 and β̈t =


βI

2t − βI
1t

...
βI

F t − βI
1t

 . (A3)

c̈I
t , therefore, is the combined firm and bank shock affecting the loan from bank 1 to firm 1
(αI

1t +βI
1t), and the elements of α̈t and β̈t tell us how much the firm and bank shocks differentially

affect every other loan. Some authors, such as Khwaja and Mian (2008) and Greenstone and Mas
(2012), estimate a version of equation (A2) using lagged Lfb,t−1 weights, so it is useful to think
about the more general proof in the case in which a researcher employs weighted least squares.
Assume this is done using a diagonal weighting matrix,Wt−1, whose diagonal elements are wfb,t−1.
Formally, we can define this matrix as

Wt−1 ≡


W2t−1 . . . 0

... . . . ...
0 . . . WFt−1

 and Wft−1 ≡


wf,2,t−t . . . 0

... . . . ...
0 . . . wf,B,t−t

 . (A4)

Wt−1 is the identity matrix in the case of OLS estimation, and the diagonal elements (wfb,t−1) will
equal Lfb,t−1 in the case of the commonly-used weighted least squares procedure. We can write
the moment conditions as

45



E


Wt−1ηt

F̈
′

tWt−1ηt

B̈
′

tWt−1ηt

 = 0, (A5)

and the corresponding sample moment condition as
Wt−1η̂t

F̈
′

tWt−1η̂t

B̈
′

tWt−1η̂t

 = 0, (A6)

where η̂t are the residuals obtained from estimating equation (A2).
Our second normalization rules out trivial interaction terms that are perfectly collinear with

the constant term or fixed effects as this type of interaction also will not affect the predicted
values. To see the problem formally, note that we can always write the interaction term as

Zt = 1δt + F̈tδ̈Ft + B̈tδ̈
B
t + ζt, (A7)

where δ1
t , δ̈Ft , and δ̈Bt are components of Zt that only vary at the firm and bank level and ζt 6= 0

is an orthogonal component of the variable that does not only vary by firm or bank. Just as we
did not want our estimates to vary based on which firm and bank we drop in the estimation,
we also do not want to consider trivial variation arising from, for example, adding a constant to
a variable, which would reduce the estimated value of ct by the value of the constant times the
estimated coefficient on the variable. Similarly, if we add a number to all the values associated with
a particular bank or firm, this will just change the value of β̈bt and α̈ft by the same amount. Since
we obviously do not want to consider cases in which our estimates of bank and firm shocks move
simply because we added a constant to the interaction term, we need to normalize the interaction
term so that it only captures bank-firm interactions that are orthogonal to the bank and firm fixed
effects. It is straightforward to do this by regressing the bank-firm interaction terms, Zt, on the
firm and bank fixed effects (F̈t and B̈t ) using WLS, and defining the residual ζ̂t as the normalized
interaction term. Mechanically, this imposes the following moment conditions on ζ̂t:

1′Wt−1ζ̂t

F̈
′

tWt−1ζ̂t

B̈
′

tWt−1ζ̂t

 = 0 (A8)

Substituting equation (A7) into equation (A2) yields

D+
t = 1cI

t + F̈tα̈It + B̈tβ̈It + ζ̂tγt + ηt, (A9)

where cI
t = c̈t + δ̂1

t , α̈I t = α̈t + ˆ̈δFkt, and β̈It = β̈t + ˆ̈δBkt and ζ̂t = Zkt − 1δ̂1
kt − F̈t

ˆ̈δFkt − B̈t
ˆ̈δBkt.

In other words, the identification of the bank-firm interaction terms is due to the portion of the
variable that is not fully explained by the firm and bank fixed effects.

Estimation of equation (A9) requires setting the sample moments to zero:
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1′Wt−1η̂t

F̈
′

tWt−1η̂t

B̈
′

tWt−1η̂t

 =


1′Wt−1

(
D+
t −

(
1cI

t + F̈t ˆ̈αIt + B̈t
ˆ̈βIt + ζ̂tγ̂t

))
F̈
′

tWt−1

(
D+
t −

(
1cI

t + F̈t ˆ̈αIt + B̈t
ˆ̈βIt + ζ̂tγ̂t

))
B̈
′

tWt−1

(
D+
t −

(
1cI

t + F̈t ˆ̈αIt + B̈t
ˆ̈βIt + ζ̂tγ̂t

))



=


1′Wt−1

(
D+
t −

(
1cI

t + F̈t ˆ̈αIt + B̈t
ˆ̈βIt
))

F̈
′

tWt−1

(
D+
t −

(
1cI

t + F̈t ˆ̈αIt + B̈t
ˆ̈βIt
))

B̈
′

tWt−1

(
D+
t −

(
1cI

t + F̈t ˆ̈αIt + B̈t
ˆ̈βIt
))

− γt


1′Wt−1ζ̂t

F̈
′

tWt−1ζ̂t

B̈
′

tWt−1ζ̂t

 = 0

Substituting in equation (A8) into the last term yields


1′Wt−1η̂t

F̈
′

tWt−1η̂t

B̈
′

tWt−1η̂t

 =


1′Wt−1

(
D+
t −

(
1cI

t + F̈t ˆ̈αIt + B̈t
ˆ̈βIt
))

F̈
′

tWt−1

(
D+
t −

(
1cI

t + F̈t ˆ̈αIt + B̈t
ˆ̈βIt
))

B̈
′

tWt−1

(
D+
t −

(
1cI

t + F̈t ˆ̈αIt + B̈t
ˆ̈βIt
))

 = 0. (A10)

Note however, that if we had not included the interaction term we would have estimated

D+
t = 1ct + F̈tα̈t + B̈tβ̈t + εt, (A11)

The weighted least squares estimates of the parameters (ĉW
t , ˆ̈αWt , and ˆ̈βWt ) can be obtained by

setting the following sample moments to zero.
1′Wt−1ε̂t

F̈
′

tWt−1ε̂t

B̈
′

tWt−1ε̂t

 =


1′Wt−1

(
D+
t −

(
1cW

t + F̈t ˆ̈αWt + B̈t
ˆ̈βWt

))
F̈
′

tWt−1

(
D+
t −

(
1cW

t + F̈t ˆ̈αWt + B̈t
ˆ̈βWt

))
B̈
′

tWt−1

(
D+
t −

(
1cW

t + F̈t ˆ̈αWt + B̈t
ˆ̈βWt

))

 = 0 (A12)

Clearly, the moment equations given by (A10) and (A12) are identical. Since we know that WLS
parameter estimates are uniquely identified, we have proven Proposition 1.

Appendix B: Proof of Proposition 2

WLS estimation requires us to chose parameters that set the sample moment conditions given in
equation (A10) or equivalently (A12) to be zero. We can expand the equations for each block in
the matrix. For example, the element can be written as

1′Wt−1ε̂t =
∑

fb∈Gt

(
D (Lfbt/Lfb,t−1)− ĉW

t − ˆ̈αW
ft −

ˆ̈βW
bt

)
wfb,t−1 = 0, (A13)

where Gt is the set of fb pairs in which D (Lfbt/Lfb,t−1) is well defined.42 This sample moment
condition can be rewritten as:

42In the log specification this will be whenever Lfbt > 0 and Lfb,t−1 > 0. The first inequality need not hold in
the percentage change specification.
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∑
fb∈Gt

D (Lfbt/Lfb,t−1) wfb,t−1∑
fb∈Gt

wfb,t−1
=

∑
fb∈Gt

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
wfb,t−1∑

fb∈Gt

wfb,t−1
. (A14)

If we measure growth rates (D (Lfbt/Lfb,t−1)) as percentage changes (Lfbt/Lfb,t−1 − 1) and set
wfbt−1 = Lfb,t−1, which corresponds to weighting the data by

√
Lfb,t−1, the weighted average of

our predicted growth rates, based on our estimated coefficients, will equal the aggregate growth
rate of lending.43 We can see this by just substituting these values for the growth rate and weights
into equation (A14):

∑
fb∈Gt

Lfbt − Lfb,t−1

Lfb,t−1

Lfb,t−1∑
fb∈Gt

Lfb,t−1
=

∑
fb∈Gt

Lfbt −
∑

fb∈Gt

Lfb,t−1∑
fb∈Gt

Lfb,t−1
(A15)

=
∑

fb∈Gt

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
Lfb,t−1∑

fb∈Gt

Lfb,t−1
.

What about the other moment conditions? Consider, for example the row of the F̃ ′t matrix
corresponding to any firm f . In order for the moment condition for this firm to be satisfied, it
must be the case that F̃ ′ftWt−1ε̂t = 0. If we write this condition without using matrix algebra
and divide both sides of this moment condition by the number of loans made to firm f ′, N f ′

t , we
have ∑

b∈Gft

D (Lfbt/Lfb,t−1) wfb,t−1∑
b∈Gft

wfb,t−1
=

∑
b∈Gft

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
wfb,t−1∑

b∈Gft

wfb,t−1
, (A16)

where Gft are the set of banks lending to firm f (i.e., loan growth rates for which D (Lfbt/Lfb,t−1))
is well defined. If we now measure growth rates as percentage changes and weight by Lfb,t−1 we
have

∑
b∈Gft

Lfbt − Lfb,t−1

Lfb,t−1

Lfb,t−1∑
b∈Gft

Lfb,t−1
=

∑
b∈Gft

Lfbt −
∑

b∈Gft

Lfb,t−1∑
b∈Gft

Lfb,t−1
(A17)

=
∑

b∈Gft

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
Lfb,t−1∑

b∈Gft

Lfb,t−1
.

43One can see this by considering a regression of the formD = Xβ + ε , whereD denotes the dependent variable,
X is the matrix of independent variables, β denotes the coefficient vector, and ε is the error term. Weighted
least squares involves premultiplying the data by a diagonal weighting matrix P to yield PD = PXβ + Pε. The
WLS estimate of β is then β̂ =

[
(PX)′ PX

]−1 (PX)′ PD = [X′P ′PX]−1
X′P ′PD = [X′WX]−1

X′WD.
Similarly, the corresponding moment condition for the error term can be written as E[X′P ′Pε] = E[X′Wε] = 0.
Thus, weighting the data by a diagonal matrix P , whose diagonal elements are

√
Lfb,t−1, will produce a weighting

matrix W whose diagonal elements are Lfbt.
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Once again, setting the growth rate equal to the percentage growth rate of lending and weights
equal to the lagged loan levels will ensure this condition is satisfied. Finally, we can verify that
WLS estimates will exactly match the average firm-borrowing growth rate of each bank. To see
this note that in the third block of the moment condition matrix we have for any bank b:

∑
f∈Gbt

D (Lfbt/Lfb,t−1) wfb,t−1∑
f∈Gbt

wfb,t−1
=

∑
f∈Gbt

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
wfb,t−1∑

f∈Gbt

wfb,t−1
(A18)

whereGbt are the set of firms borrowing from bank b (i.e., loan growth rates for whichD (Lfbt/Lfb,t−1)
is well defined. Substituting in the same definition of the loan growth rate and the weights yields

∑
f∈Gbt

Lfbt − Lfb,t−1

Lfb,t−1

Lfb,t−1∑
f∈Gbt

Lfb,t−1
=

∑
f∈Gbt

Lfbt −
∑

f∈Gbt

Lfb,t−1∑
f∈Gbt

Lfb,t−1
(A19)

=
∑

f∈Gbt

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
Lfb,t−1∑

f∈Gbt

Lfb,t−1
.

Therefore, the firm and bank shocks will exactly match the bank, firm, and economy-wide loan
growth rates. This establishes the first sentence of our second proposition. Because we also know
that WLS estimates are uniquely identified, we know that no other estimates of bank and firm
fixed effects will have this property.

Appendix C: Proof of Proposition 3

We can prove that that OLS estimation of equation (1) produces unweighted averages of the loan
growth rates by setting wfbt = 1 and D (Lfbt/Lfb,t−1) equal to Lfbt/Lfb,t−1 − 1. In this case, our
moment conditions, given by equations (A14), (A16), and (A18) become

1
|Gt|

∑
fb∈Gt

Lfbt − Lfb,t−1

Lfb,t−1
= 1
|Gt|

∑
fb∈Gt

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
, (A20)

1
|Gf |

∑
b∈Gf

Lfbt − Lfb,t−1

Lfb,t−1
= 1
|Gf |

∑
b∈Gf

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
, (A21)

1
|Gb|

∑
f∈Gb

Lfbt − Lfb,t−1

Lfb,t−1
= 1
|Gb|

∑
f∈Gb

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
, (A22)

where |G|, |Gf |, and |Gf | are the number of observations with positive loans in the previous period
for the economy, firm f , and bank b. This establishes the first sentence of the proposition that
the predicted loan growth rates using OLS estimation yields forecasts of loans that equal the
unweighted average growth rates of individual loans at the firm, bank, and economy level.

We can prove the second sentence in the proposition by setting g (Lfbt/Lfb,t−1) = ∆ lnLfbt. In
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this case, our moment conditions, given by equations (A14), (A16), and (A18) become∑
fb∈G

∆ lnLfbt
wfb,t−1∑

fb∈G

wfb,t−1
=
∑

fb∈G

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
wfb,t−1∑

fb∈G

wfb,t−1
, (A23)

∑
b∈Gf

∆ lnLfbt
wfb,t−1∑

b∈Gf

wfb,t−1
=
∑

b∈Gf

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
wfb,t−1∑

b∈Gf

wfb,t−1
, (A24)

∑
f∈Gb

∆ lnLfbt
wfb,t−1∑

f∈Gb

wfb,t−1
=
∑

f∈Gb

(
ĉW

t + ˆ̈αW
ft + ˆ̈βW

bt

)
wfb,t−1∑

f∈Gb

wfb,t−1
. (A25)

Noting that ∆ lnLfbt = ln (Lfbt/Lfb,t−1), we know from Proposition 2 that these are nothing
more than logs of the weighted geometric averages of one plus the loan growth rates. This es-
tablishes the second sentence of the proposition that the predicted loan growth rates using OLS
estimation yields forecasts of loans that equal the geometric mean of one plus the growth rates of
individual loan growth rates at the firm, bank, and economy level.

Appendix C: Proof of Proposition (4)

Identifying the Bank and Firm Shocks

It will prove useful to simplify the algebra by changing our normalization before proceeding. Im-
portantly, this change in normalization is for mathematical convenience only, as we will renormalize
the data in an economically meaningful way in Section 6. Under the normalization that was most
convenient for WLS estimation, our moment equations (A19) and (A17) can be expressed as

D+
Bt = ĉW

t 1B +BW
t + Φt−1A

W
t (A26)

and

D+
Ft = ĉW

t 1F +AW
t + Θt−1B

W
t , (A27)

where AW
t and BW

t are the matrices of coefficients we obtain when we drop the first firm and
bank, i.e.,

AW
t ≡


0

ˆ̈αW
2t
...

ˆ̈αW
F t

 ,B
W
t ≡



0
ˆ̈βW

2t
...

ˆ̈βW
F t

 ,

and

D+
Ft ≡


DF +

1t
...

DF +
F t

 ,DBt ≡


DB+

1t
...

DB+
bt

 ,Θt ≡


θ11t . . . θ1Bt

... . . . ...
θF 1t . . . θF Bt

 ,Φt ≡


φ11t . . . φF 1t

... . . . ...
φ1Bt . . . φF Bt

 .
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For each firm, we know that if we sum the share of its borrowing from each bank across all banks,
the total must equal one. This means that Θt−11B = 1F , where 1B and 1F are B × 1 and F × 1
vectors of 1’s, respectively. This fact enables us to rewrite equations (A26) and (A27) as

D+
Bt =

(
ĉW

t 1B +BW
t

)
+ Φt−1A

W
t

and

D+
Ft = AW

t + Θt−1
(
ĉW

t 1B +BW
t

)
.

Writing the moment conditions this way is tantamount to a new normalization in which we drop
the constant term and define the bank shocks βW

bt = ĉW
t + ˆ̈βW

bt .
We can make things more compact and simplify our notation by rewriting these equations as

D+
Bt = B+

t + Φt−1A
+
t (A28)

and

D+
Ft = A+

t + Θt−1B
+
t , (A29)

where

A+
t ≡


0
αW

2t
...
αW

F t

 = A1
t ,B

+
t ≡


β+

1t

β+
2t
...
β+

F t

 =
(
ĉW

t 1B +BW
t

)
.

In other words, the moment equations given by (A19) and (A17) are equivalent to equations (A28)
and (A29) up to a choice of normalization.44 As we have already shown in Proposition 2, there
is a unique solution to this system, and it is immediately apparent from equations (7) and (8)
that if we solve for the parameters, A+

t and B+
t , we will obtain a set of bank- and firm-shock

estimates that will aggregate to match every bank and firm’s growth rate of pre-existing loans.
Note, however, that if we just replaced D+

Bt and D+
Ft in equation (A28) and (A29) with DBt and

DFt, we would obtain the following system:

DBt = Bt + Φt−1At (A30)

and

DFt = At + Θt−1Bt, (A31)

where
44The WLS parameters obtained from the new normalization can be recovered by setting ĉW

t = β+
1t and ˆ̈βW

bt =
β+

bt − β
+
1t.
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At ≡


0
α2t

...
αF t

 = A1
t ,Bt ≡


β1t

β2t

...
βF t

 ,

and the parameter estimates that would solve this new system. In this case, At and Bt can be
aggregated so that they exactly match every bank and firm’s growth rate of total loans. Moreover,
the isomorphism of equations (A28)-(A29) and (A30)-(A31) tells us that equations (A30)-(A31)
have a unique solution. In addition, the estimated parameters that solve equations (A30)-(A31)
must be identical to those that solve equations (A28)-(A29) if there are no new loans (i.e.,A+

t = At

and B+
t = Bt if D+

Bt = DBt and D+
Ft = DFt). In other words, in the absence of new loans, the

WLS parameter estimates and the estimates obtained by solving equations (A30) and (A31) must
be identical given any common choice of normalization.

The advantage of working with equations (A30) and (A31) is that we can now obtain bank and
firm-shock parameter estimates that aggregate appropriately even if there is new lending activity.
In order to show how to do this we first rewrite equation (8) as

DF
ft ≡ αft +

∑
b

θfb,t−1 (βbt − β1t) + β1t

= αft +
∑
b 6=1

θfb,t−1 (βbt − β1t) + β1t, (A32)

where we use the fact that the loan shares must sum to one, i.e., ∑b θfb,t−1 = 1. Similarly, since
α1t = 0, we can rewrite equation (7) for any bank, b, as

DB
bt = βbt +

∑
f 6=1

φfb,t−1αft, (A33)

and for bank 1, we have

DB
1t = β1t +

∑
f 6=1

φf1,t−1αft. (A34)

Finally, for firm 1, we have

DF
1t =

∑
b 6=1

θ1b,t−1 (βbt − β1t) + β1t, (A35)

which can be rewritten as
β1t = DF

1t −
∑
b6=1

θ1b,t−1 (βbt − β1t) . (A36)

If we substitute equation (A36) into equation (A32), we obtain
DF

ft −DF
1t = αft +

∑
b 6=1

(θfb,t−1 − θ1b,t−1) (βbt − β1t) = αft +
∑
b 6=1

θ̈fb,t−1β̈bt, (A37)

where θ̈fbt ≡ (θfbt − θ1bt), and β̈bt ≡ (βbt − β1t). Subtracting equation (A34) from equation (A33)
gives us

DB
bt −DB

1t = (βbt − β1t) +
∑
f 6=1

(φfb,t−1 − φf1,t−1)αft = β̈bt +
∑
f 6=1

φ̈fb,t−1αft, (A38)

where φ̈fbt = (φfbt − φf1t).
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For every year, equations (A37) and (A38) comprise a system of F + B − 2 equations and
F +B − 2 unknowns, where F denotes the number of firms and B denotes the number of banks.
In other words, the moment conditions uniquely determine the bank and firm shocks up to the
choice of numéraire. To see this, using matrix algebra, we begin with a few definitions:

Ät ≡


α2t

...
αF t

 , B̈t ≡


β̈2t

...
β̈Bt

 , D̈Ft ≡


DF

2t −DF
1t

...
DF

F t −DF
1t

 , D̈Bt ≡


DB

2t −DB
1t

...
DB

Bt −DB
1t



Θ̈t ≡


θ̈22t . . . θ̈2Bt

... . . . ...
θ̈F 2t . . . θ̈F Bt

 , Φ̈t ≡


φ̈22t . . . φ̈F 2t

... . . . ...
φ̈2Bt . . . φ̈F Bt


We now can rewrite equation (A37) as

Ät = D̈Ft − Θ̈t−1B̈t (A39)

and equation (A38) as

B̈t = D̈Bt − Φ̈t−1Ät. (A40)

If we use this fact and insert equation (A39) into equation (A40), we know that any solution to
equations (8) and (A40) must satisfy

B̈t = D̈Bt − Φ̈t−1
[
D̈Ft − Θ̈t−1B̈t

]
.

This equation can be rewritten as(
IB−1 − Φ̈t−1Θ̈t−1

)
B̈t = D̈Bt − Φ̈t−1D̈Ft,

where IB−1 is a (B − 1) × (B − 1) identity matrix. We can solve for At and Bt by inverting(
IB−1 − Φ̈t−1Θ̈t−1

)
to yield45

B̈t =
(
IB−1 − Φ̈t−1Θ̈t−1

)−1 (
D̈Bt − Φ̈t−1D̈Ft

)
(A41)

and

Ät = D̈Ft − Θ̈t−1
(
IB−1 − Φ̈t−1Θ̈t−1

)−1 (
D̈Bt − Φ̈t−1D̈Ft

)
.

We then can compute β1t according to the following formula:

β1t = DB
1t −

∑
f 6=1

φf1,t−1αft.

Decomposing the Shocks

We now turn to using our parameter estimates to show how we can decompose aggregate lending
growth into bank, firm, industry, and common shocks. Our choice of numéraire was necessary for

45One important assumption we make is that
(
IB−1 − Φ̈t−1Θ̈t−1

)
is invertible. This condition would be

violated if, say, one firm only borrowed from one bank, and the bank had no other lending relationships.
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solving the system, but it is not economically meaningful and has the unappealing property of
expressing each shock relative to an arbitrary firm shock. In order to eliminate this problem, we
will renormalize the system by expressing each shock relative to the median firm or bank shock.
Specifically, we define the common firm shock, Āt, as the median firm shock, and the common
financial shock as the median bank shock, B̄t. We next define the firm-borrowing shock as the
difference between the actual shocks and the median shock, i.e., Ȧt ≡ At − Āt1F , and similarly
the financial institution loan shock as Ḃt ≡ Bt − B̄t1B, where

At ≡


α1t

...
αF t

 ,Bt ≡


β1t

...
βBt

 .
We can rewrite the system of equations as

DFt = At + Θt−1Bt

= Ȧt + Āt1F + Θt−1Ḃt + B̄tΘt−11B
= Ȧt + Θt−1Ḃt +

(
Āt + B̄t

)
1F , (A42)

where we move from the second line to the third by making use of the fact that the borrowing
shares from each financial institution (Θt−1) must sum to one, i.e., Θt−11B = 1F .

Just as we can decompose firm borrowing into these three shocks, we can also decompose bank
lending into a similar set of three elements. If we make use of the fact that each bank’s share of
total lending to each firm must sum to one (i.e., Φt−11F = 1B), we can rewrite equation (7) as

DBt = Ḃt + Φt−1Ȧt +
(
B̄t1B + Φt−1Āt1F

)
= Ḃt + Φt−1Ȧt +

(
Āt + B̄t

)
1B. (A43)

We now turn to isolating the industry shocks. We define the firm shock as Ãt ≡ Ȧt −
medianf∈n(Ȧt), where n denotes the industry the firm is in. Similarly, we define the bank shock
as B̃t ≡ Ḃt − median(Ḃt) = Ḃt since median(Ḃt) = 0. Finally, we can define the vector of
industry-level medians as Nt; then we can rewrite firm and bank decompositions as

DFt = Ãt +Nt + Θt−1B̃t +
(
Āt + B̄t

)
1F , (A44)

and

DBt = B̃t + Φt−1Ãt + Φt−1Nt +
(
Āt + B̄t

)
1B. (A45)

54



Appendix E: Summary Statistics

By Year Mean Median SD Minimum Maximum

Percent change in Flow of Fundst -0.022 -0.029 0.047 -0.094 0.085

Investmentt /Capitalt -1 0.073 0.069 0.017 0.055 0.121

Common Shockt -0.010 -0.010 0.047 -0.142 0.066

By Bank

Bank Shockb,t 0.010 0.000 0.182 -0.548 0.934

Capital Injectionb,t 0.096 0.000 0.295 0.000 1.000

Risk-Based Capital Ratiob,t 8.796 9.120 1.766 2.820 13.610

∆ ln(Market-to-Book Valueb,t- 1) -0.099 -0.107 0.225 -0.684 0.572

By Firm

Investmentf,t /Capitalf,t- 1 0.118 0.080 0.167 -0.398 1.745

Cash-Flowf,t /Capitalf,t- 1 0.335 0.209 0.719 -1.569 15.410

Market-to-Book Valuef,t 1.696 1.295 1.377 0.234 10.367

Bank Shockf,t -0.011 -0.012 0.051 -0.173 0.151

Firm Shockf,t 0.059 0.000 0.393 -0.760 3.252

Industry Shockf,t 0.003 0.002 0.077 -0.658 2.492

Mean Loan-to-Asset Ratiof 0.196 0.174 0.123 0.001 0.748

Mean Bond-to-Asset Ratiof 0.048 0.029 0.057 0.000 0.359

Notes: The variables are defined as follows. By year: Percent change in Flow of Fundst is the year-on-year
percent change in the stock of lending from private financial institutions to private nonfinancial corporations.
Investmentt/Capitalt−1 is the total national investment in year t divided by the total capital stock in year
t− 1, both measured in 2000 yen. Common Shockt is the sum of the median firm shock and the median bank
shock in each year. By bank: Bank Shockb,t is the idiosyncratic bank shock for each bank. Capital Injectionb,t

is a binary variable equal to 1 if bank b received a capital injection in year t. Risk-Based Capital Ratiob,t

is the combined Tier 1 and Tier 2 risk-based capital according to the Basel II agreement. ∆ ln(Market-to-
Book Valueb,t−1) is the lagged year-on-year log change in the market-to-book value, computed as the average
of the monthly share price multiplied by the number of shares outstanding and divided by the book value
of each firm’s equity. By firm: Investmentf,t/Capitalf,t−1 is the sum of each firm’s year-on-year change
in tangible fixed assets plus depreciation divided by that firm’s tangible fixed assets in year t − 1. Cash
Flowf,t/Capitalf,t−1 is firm f ’s ordinary income plus depreciation divided by tangible fixed assets in year
t − 1. Market-to-Book Valuef,t is the market value of each firm divided by its shareholder equity. Bank
Shockf,t is a weighted sum of the idiosyncratic bank shocks for all banks from which firm f was receiving a
loan in year t − 1. Firm Shockf,t is the idiosyncratic shock for each firm in each year. Industry Shockf,t is
the industry level shock for the industry of which firm f is a member. Mean Loan-to-Asset Ratiof is firm
f ’s mean ratio of total loans to total assets over the sample period. Mean Bond-to-Asset Ratiof is firm f ’s
mean ratio of total bonds to total assets.
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