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Abstract

Development of Cut Cell Methods for Barrier Simulations with Shallow Water Equations

Chanyang Ryoo

In this thesis we aim to provide computationally efficient methods of performing water

barrier simulations. The innate challenge in simulations of structures such as sea or surge barriers

is resolution. Because barriers tend to be long and thin compared to the surrounding landscapes

they protect, one must put mesh refinement on the barrier region in order to even numerically

recognize the barrier’s presence. This is a costly computation due to the CFL condition which

puts a strict limit on the size of time step proportional to the spatial mesh size. Another issue is

the complexity of meshing near the barrier. Since barriers are most likely slanted or have certain

shapes, the grid has to reflect this in the form of a grid mapping or an unstructured grid.

To mitigate the issue of resolution, we propose an approximation of the barrier with a line

interface embedded on a Cartesian grid, reducing our problem to an embedded boundary

problem. Then to avoid complex meshing, we develop three cut cell methods on two shapes of

barriers: 1) the h-box method (HB), 2) the state redistribution method (SRD), and 3) the cell

merging method (CM). Doing this two-step approach means that we can lower the resolution near

the barrier region and still feel the presence of the barrier and capture its effect, which would

otherwise not be the case if we relied on resolution for representation of the barrier. This does not

mean that we are losing accuracy by lowering resolution, however. Rather, we are maintaining

about the same accuracy while also lowering resolution (and thus cutting computational cost),

which we show by comparison with a refined barrier. We solve the shallow water equations as our

underlying PDEs to simulate water interaction with the barrier, as they are commonly used in

tsunami and storm simulations. We implement our work on the PYCLAW 1 framework, which is

an objected oriented program that solves conservation laws.

1An open sourceware for solving hyperbolic conservation equations.
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Chapter 1: Introduction and Background

1.1 Motivation

In light of sea level rises and projected increase in storms and surges [1], people around the

world have been building barriers off deltas, between islands, and on rivers. The most notable

example of this is in Netherlands, where numerous surge barriers have been built under a project

called “Delta Works". Talks of possibly building a similar barrier in New York City are in progress

(Fig. 1.1). The hope of building such barriers is to reduce flooding and its associated infrastructural

and financial damages.

(a) Linear (b) V shaped

Figure 1.1: Two proposed shapes of barriers for NYC. (Left: Wikipedia, right: [2].)

To test their efficiency, however, one must run a simulation comparing how far a certain storm-

caused flooding will reach with and without the barrier. The simulation must reveal what protection

they can provide to the city as a whole. Such a task is an interdisciplinary one and an active area

of research [3, 4]. Three-dimensional simulations are available online1 of how the barrier may

1See videos here: video 1, video 2

1

https://www.youtube.com/watch?v=8mtvjMHqbHI
https://www.youtube.com/watch?v=MjdkRk51VUw


ℎ
𝜂

𝑏

Figure 1.2: 1D diagram showing motivation and possible scenario of a storm barrier (red) in action,
along with some measurement variables: the bathymetry 𝑏 measured from fixed level (dashed), the
height ℎ of water column, and the surface level 𝜂 = 𝑏 + ℎ.

weather a windy climate (e.g. by Arcadis and CH2M Hill, engineering consulting companies

[5]). Three-dimensional simulations that evaluate the region-wide effect of a storm, however, is

both unwarranted and computationally intractable. As a consequence modeling coastal flooding

scenarios, especially with optimization, usually involves a reduction to two-dimensional equations.

Unfortunately another problem arises even in a two-dimensional simulation. If one represents

the barrier as part of the ground level (i.e. via elevating the bathymetry), then the barrier is going

to be very small and narrow in width compared to the overall city landscape, which then requires

much higher resolution and much more computation around the barrier.

A work around this issue is where our model problem finds its origination: the problem will

approximate the physical barrier with a zero width barrier. Instead of a bathymetric variation, it

will be akin to an embedded boundary interface that mimics a fixed, stationary barrier which allows

both reflection and overtopping of waves (see Fig. 1.2).

Another approximation we use that is different between our problem and some already existing

3D simulations is that the equations we solve will be the shallow water equations (SWE) instead

of the more complicated Navier-Stokes equations. They have been used to model tsunamis and

storms as well [6].
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1.2 Embedded boundary and cut cells

Furthermore, SWE are an example of hyperbolic PDEs, and hyperbolic PDEs with embedded

boundaries are an important class of problems in computational fluid dynamics, another example

being the Euler equations [7, 8]. Embedded boundary problems are those in which the grid is

Cartesian and has boundary elements overlapping it, producing cut cells or small cells (size <

0.5ℎ, with ℎ being size of regular mesh). A 1D example of a cut cell caused by a barrier is

shown in Fig. 2.1. This is in contrast to problems using boundary adapted grids which rotate grids

with respect to the boundaries and thereby avoid creating cut cells. Embedded boundary grids

provide much simpler calculations away from the boundaries and require only special treatment

near the boundaries, whereas using boundary adapted grids requires a global transformation of

grid directions and is specific to the given boundaries. This provides incentives to prefer embedded

boundary grids.

However, using embedded boundaries are still computationally challenging because of the cut

cells they produce [9], which impose a strict time step condition due to the CFL condition (i.e. the

prevention of wave propagation beyond mesh size [10]). Various methods have been developed to

tackle this problem and are collectively called cut cell methods [11, 12, 13, 14, 15, 16, 17, 18, 19].

The novelty of our work is that here we are presenting a unique embedded boundary where the

boundary allows flux across it. This is because the boundary represents an overtoppable barrier

and is parameterized by a variable height. SWE with cut cells (no flux across boundary, or the case

of “infinite" height) have been dealt with elsewhere [20].

1.3 Prior Work

There are largely two types of research done for barrier simulations. One is simulations done

“up close", looking at the velocity profile of water through a barrier and the flow change near the

barrier. Examples of this include research done by Army Corp of Engineers [21] and by Delta

Works [22]. This type of research mostly uses the finite element method with unstructured grids
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and is concerned about detailed design of the barrier, which we are unconcerned about. Some have

even suggested what type of material should be used for building the barriers [23], where finite

element method is again used for the barriers themselves.

A second type of research is for storm protective strategies. This type of research uses software

such as ADCIRC, SLOSH, SWAN, and GEOCLAW to look at the more global scale of storms [24,

25]. ADCIRC uses the finite element method; SLOSH uses finite difference; while SWAN and

GEOCLAW uses finite volume. It is to be remarked that SLOSH also approximates barriers as a

line interface [26]. However, the difference is that it uses conformal mapping and makes sure that

the barrier runs along the mapped grid edge. Our work allows flexibility of grid placement and

does not require grid alignment of the barrier. Furthermore, we use finite volume methods which

captures discontinuities such as shocks in the numerical solutions.

None of these work cited use cut cell methods whose benefits are freedom in barrier placement

and relaxed CFL condition. We provide here the basics of our cut cell methods, their numerical

accuracy, computational benefits and some realistic scenarios, and we remark that our methods can

be adapted and further implemented in any finite volume storm simulating software in the future.
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Chapter 2: Model Equations and Problem Setup

Shallow water equations (SWE) are a system of hyperbolic partial differential equations mod-

eling horizontal, surface water motion. There are source terms to construct a geophysical version

of SWE [27], for which solvers like GEOCLAW exists, but for simplicity we only consider bathy-

metric source terms. Also a note is that in our numerical experiments, we perform dimensionless

calculations and set 𝑔 = 1, with the assumption that the physics of the equations remain the same

regardless of our choice of 𝑔.

2.1 1D shallow water equations

First we consider the 1D problem. The set of equations that we will be solving is:

ℎ𝑡 + (ℎ𝑢)𝑥 = 0 (2.1)

(ℎ𝑢)𝑡 +
(
1
2
𝑔ℎ2 + ℎ𝑢2

)
𝑥

= −𝑔ℎ𝑏𝑥 , (2.2)

where ℎ is the water height, 𝑢 depth-averaged water velocity, 𝑏 the bathymetry, and 𝑔 the gravita-

tional constant. In case there is no bathymetric change, these equations describe conservation of

mass and momentum 𝑞 = [ℎ, ℎ𝑢].

In vector notation, therefore, the SWE becomes:

𝑞𝑡 + 𝑓 (𝑞)𝑥 = Ψ(𝑞), (2.3)

where 𝑞 = [ℎ, ℎ𝑢], 𝑓 (𝑞) = 𝑓 (ℎ, ℎ𝑢) = [ℎ𝑢, 1
2𝑔ℎ

2 + (ℎ𝑢)2/ℎ], and Ψ(𝑞) = [0,−𝑔ℎ𝑏𝑥].

A 1D diagram of the problem at hand is shown in (Fig. 2.1). As can be seen in the figure, the

arbitrary barrier placement along the grid creates a cut of cell sized 𝛼Δ𝑥 and (1 − 𝛼)Δ𝑥 with some
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𝛼 > 0.

𝛼Δ𝑥 (1 − 𝛼)Δ𝑥

𝑖𝑤 𝑖𝑤 + 1

ℓ

Figure 2.1: 1D setup, example of a barrier with variable height ℓ. Cut cells have index 𝑖 = 𝑖𝑤, 𝑖𝑤 +1

2.2 2D shallow water equations

2D SWE can also be written as a set of conservation equations [28]:

ℎ𝑡 + (ℎ𝑢)𝑥 + (ℎ𝑣)𝑦 = 0 (2.4)

(ℎ𝑢)𝑡 +
(
1
2
𝑔ℎ2 + ℎ𝑢2

)
𝑥

+ (ℎ𝑢𝑣)𝑦 = −𝑔ℎ𝑏𝑥 (2.5)

(ℎ𝑣)𝑡 + (ℎ𝑢𝑣)𝑥 +
(
1
2
𝑔ℎ2 + ℎ𝑣2

)
𝑦

= −𝑔ℎ𝑏𝑦, (2.6)

for (𝑥, 𝑦) ∈ Ω ⊂ R2, where ℎ represents the height of water, 𝑢 and 𝑣 the 𝑥-velocity and 𝑦-velocity,

𝑔 the gravitational constant, and 𝑏 = 𝑏(𝑥, 𝑦) the bathymetry. In the first equation, we have conser-

vation of mass ℎ and in the second and third equations, if ∇𝑏 ≡ 0, conservation of momentum. In

the presence of bathymetric variation there is loss of conservation of momentum.

We can thus represent the SWE in the following form Eq. (2.7) as derived in [10]. If 𝑞 =

[ℎ, ℎ𝑢, ℎ𝑣], 𝑓 (𝑞) = [𝑞2,
1
2𝑔𝑞

2
1 +

𝑞2
2
𝑞1
,
𝑞2𝑞3
𝑞1

], 𝑔(𝑞) = [𝑞3,
𝑞2𝑞3
𝑞1
, 1

2𝑔𝑞
2
1 +

𝑞2
3
𝑞1
], and Ψ(𝑞, 𝑏) = [0,−𝑔𝑞1𝑏𝑥 ,

−𝑔𝑞1𝑏𝑦], then we have for our SWE:

𝑞𝑡 + 𝑓 (𝑞)𝑥 + 𝑔(𝑞)𝑦 = Ψ(𝑞, 𝑏). (2.7)

In 2D, we will set up two types of barrier on our grid, the slanted and the 𝑉 shaped barrier, as
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suggested by Fig. 1.1 and seen in Fig. 2.2. Furthermore, we provide in the Appendix the algorithms

used to find the cut cell data and the Fortran-Python module we built to automate and customize

this process.

1

2

(a) Model problem 1: slanted barrier.

1

2

3

(b) Model problem 2: 𝑉-barrier

Figure 2.2: Grid setup of two model barrier problems. 1, 2, and 3 denote the vertices of the barriers.

2.3 Properties of solutions to SWE

2.3.1 Speed vs. velocity

In SWE, the velocity of a water column is a state attribute denoted by either 𝑢 or 𝑣. However,

this is different from a speed of a wave. A wave can be thought of as a “group" of state values

traveling together across the physical domain. Mathematically, a wave is the difference of two

water states or flux vectors, and a speed is the eigenvalue corresponding to the eigen-decomposition

of that wave, using eigenvectors of the Jacobians 𝑓 ′(𝑞), 𝑔′(𝑞). We denote the speed by 𝜆 and we

usually have 𝜆 = 𝑢 ±
√︁
𝑔ℎ. Note that even when initial 𝑢 is zero, we can still have nonzero speed√︁

𝑔ℎ. This is called a gravity wave. On the other hand, it is possible to have a wave speed of zero,

where the water states involved have nonzero velocity. This occurs in steady state solutions.

This distinction is important in categorizations of types of flows, which is done using a param-

eter called the Froude number:

𝐹𝑟 =
|𝑢 |√︁
𝑔ℎ
.
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If Froude number is greater than 1, then the velocity associated with a wave is greater than the

speed. This is called a supercritical flow. If it is less than 1, then the velocity is less than the speed.

This is called a subcritical flow. When it is equal to 1, we have critical flow.

2.3.2 Type of waves

Furthermore, there are four categorizations of waves. First is subsonic wave. This is when

all the speeds associated with a wave are negative. Second is supersonic wave, which is when all

the speeds are positive. Third is transonic wave, when there are both positive and negative speeds

associated with a wave. Finally, there is the stationary wave, whose speed is zero.

As we will see in the following chapters, SWE allow nonlinear solution forms, which include

shocks and rarefactions. These all arise because of the nonlinear nature of the waves’ speed profile.

Sometimes, the speed profile cross within itself (shocks) or fan out (rarefaction). Also, in 2D

SWE there is a third linear type of wave called the linearly degenerate wave. This wave is what

propagates the transverse momentum across the physical domain.

A final comment on the property of solutions to SWE is that depending on the source terms

introduced to the equations, there arise completely different type of waves. We shall only consider

variable bathymetry as our source term. This amounts to the solution only containing gravity

waves, which are waves that are generated or influenced by the graviational force only. However,

there are the following possible source terms and corresponding wave solutions:

• Coriolis force 𝑓 : This adds source terms 𝑓 ℎ𝑢 and 𝑓 ℎ𝑣. Poincare waves and Kelvin waves

result from nonzero 𝑓

• Drag coefficient 𝑘: This adds the source terms 𝑘ℎ𝑢 and 𝑘ℎ𝑣. This affects the speed of a

wave.

• Viscosity coefficient 𝜈: This adds the source terms 𝜈((ℎ𝑢)𝑥𝑥 + (ℎ𝑢)𝑦𝑦), 𝜈((ℎ𝑣)𝑥𝑥 + (ℎ𝑣)𝑦𝑦)

and affects the momentum calculations.
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Chapter 3: Finite volume methods

3.1 Flux Difference Form

We employ a finite volume method to solve SWE. Finite volume methods seek to approxi-

mate volume averages of state variables over a control volume 𝑉𝑖 (a grid cell [𝑥𝑖−1/2, 𝑥𝑖+1/2] ×

[𝑦 𝑗−1/2, 𝑦 𝑗+1/2]) and their evolution. This can be seen by taking volume integral of the original

hyperbolic equations:

∫
𝑉𝑖

(
𝑞𝑡 + 𝑓 (𝑞)𝑥 + 𝑔(𝑞)𝑦

)
𝑑𝑉 =

∫
𝑉𝑖

Ψ(𝑞, 𝑏) 𝑑𝑉 (3.1)

𝑑𝑄𝑖

𝑑𝑡
|𝑉𝑖 | +

∫
𝑉𝑖

𝑓 (𝑞)𝑥 𝑑𝑉 +
∫
𝑉𝑖

𝑔(𝑞)𝑦 𝑑𝑉 =

∫
𝑉𝑖

Ψ(𝑞, 𝑏) 𝑑𝑉 (3.2)

𝑑𝑄𝑖

𝑑𝑡
+ 1
|𝑉𝑖 |

∮
𝑆𝑖

( 𝑓 (𝑞) + 𝑔(𝑞)) · 𝑛 𝑑𝑆 =
1
|𝑉𝑖 |

∫
𝑉𝑖

Ψ(𝑞, 𝑏) 𝑑𝑉, (3.3)

where𝑄𝑖 (𝑡) |𝑉𝑖 | =
∫
𝑉𝑖
𝑞𝑑𝑉 (via mean value theorem), |𝑉𝑖 | the volume of 𝑉𝑖, 𝑆𝑖 the surface area of 𝑉𝑖

(via Gauss’s theorem), and 𝑛 is the normal surface vector of 𝑆𝑖 . As can be seen by the scalar 1/|𝑉𝑖 |,

we now work with volume averages.

The usual finite volume method in 2D is then to divide the domain into grid cells 𝑉𝑖, compute

(or initialize) state averages over 𝑉𝑖, calculate fluxes on each edge of the grid cell (𝑆𝑖), and update

the state average 𝑄𝑖 via those fluxes, while taking into account any source term averages.

In a uniform 2D Cartesian coordinate with Ψ = 0, Eq. (3.3) becomes:

𝑑𝑄𝑖

𝑑𝑡
+ 1
Δ𝑥Δ𝑦

[ ∫ 𝑦 𝑗+1/2

𝑦 𝑗−1/2

𝑓 (𝑞(𝑡, 𝑥𝑖+1/2, 𝑦))𝑑𝑦 −
∫ 𝑦 𝑗+1/2

𝑦 𝑗−1/2

𝑓 (𝑞(𝑡, 𝑥𝑖−1/2, 𝑦))𝑑𝑦

+
∫ 𝑥𝑖+1/2

𝑥𝑖−1/2

𝑔(𝑞(𝑡, 𝑥, 𝑦𝑖+1/2))𝑑𝑥 −
∫ 𝑥𝑖+1/2

𝑥𝑖−1/2

𝑔(𝑞(𝑡, 𝑥, 𝑦𝑖−1/2))𝑑𝑥
]
= 0. (3.4)
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Eq. (3.4) is then numerically approximated by integrating in time from 𝑡𝑖 to 𝑡𝑖+1 to get:

𝑄𝑛+1
𝑖 = 𝑄𝑛𝑖 −

1
Δ𝑥

(𝐹𝑖+1/2, 𝑗 − 𝐹𝑖−1/2, 𝑗 ) −
1
Δ𝑦

(𝐺𝑖, 𝑗+1/2 − 𝐺𝑖, 𝑗−1/2) (3.5)

𝑄𝑛+1
𝑖 = 𝑄𝑛𝑖 −

Δ𝑡

Δ𝑥

(𝐹𝑖+1/2, 𝑗 − 𝐹𝑖−1/2, 𝑗

Δ𝑡

)
− Δ𝑡

Δ𝑦

(𝐺𝑖, 𝑗+1/2 − 𝐺𝑖, 𝑗−1/2

Δ𝑡

)
, (3.6)

where 𝐹𝑖±1/2, 𝑗 ≈ 1
Δ𝑦

∫ 𝑡𝑖+1
𝑡𝑖

∫ 𝑦 𝑗+1/2
𝑦 𝑗−1/2

𝑓 (𝑞(𝑥±1/2))𝑑𝑦𝑑𝑡 and𝐺𝑖, 𝑗±1/2 ≈ 1
Δ𝑥

∫ 𝑡𝑖+1
𝑡𝑖

∫ 𝑥𝑖+1/2
𝑥𝑖−1/2

𝑔(𝑞(𝑦±1/2))𝑑𝑥𝑑𝑡

and we added the Δ𝑡 term on the denominator to get a time average of the integrals and on the nu-

merator to cancel out the denominator. This seemingly suggests the timestep variable is artificially

added into the numerical scheme. Note, however, that the time variable is implicit in the inte-

gral limits. Furthermore, if we treat the inner spatial integral as a constant with respect to time,

the timestep Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 will come out. This form shown in Eq. (3.6) is called the flux differ-

ence form. The flux integrals are approximated using many different ways, e.g. using Taylor’s

approximations or approximating 𝑞(𝑥 ± 1/2) (Godunov’s method) [10].

3.2 Riemann Problem

The hyperbolic equation limited to just two states on either side of a grid edge is called a

Riemann problem (RP). This means that in a 1D problem, two RP’s must be solved to update one

grid cell, whereas in 2D four must be solved. The bulk of the work done in a finite volume solver

is therefore in solving RPs. There is much technical detail that can be discussed about Riemann

problems which we do not include in this thesis, as it has been dealt with elsewhere (e.g. entropy,

numerical viscosity, Riemann invariants, etc.) [29, 30]. We only briefly mention two interesting

phenomena that occur in solutions to nonlinear hyperbolic RPs, such as in SWE.

3.2.1 Shocks

Shocks are a discontinuity in a solution that travel along the domain in time. They occur

when the characteristics curves (where 𝑑𝑞/𝑑𝑡 = 0) collide with each other (Fig. 3.1). This means

that in one region of the domain, mass is propagating in one particular direction x faster than the
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(a) Rarefaction (b) Shock

Figure 3.1: Characteristic curves of different nonlinear wave (from [30])

mass lying in that direction. Difficulties with hyperbolic problems such as SWE is that shocks

can form even with continuous initial condition, and that the PDE does not hold locally in such

discontinuities. This is why finite volume methods are used, with integrals that hold true even with

discontinuities. Another issue is that shocks travel with some speed and numerical solvers must

track them. The speed at which they travel is given by the Rankine-Hugoniot condition:

𝑠(𝑞𝑟 − 𝑞𝑙) = 𝑓 (𝑞𝑟) − 𝑓 (𝑞𝑙), (3.7)

where 𝑠 is the speed and 𝑞𝑙 , 𝑞𝑟 are the states on either side of the shock discontinuity, and 𝑓 (𝑞) is

the flux function. The equation above would be the shock speed in the 𝑥-direction in our notation

of the 2D problem.

3.2.2 Rarefactions

Rarefactions occur when characteristics curve diverge away from each other and leave a gap in

between, which is where the rarefaction occurs (Fig. 3.1). Here, the solution of the hyperbolic RP

is continuous from one end of the diverging characteristic line to the other. This is accomplished
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by a similarity solution 𝑞(𝑥, 𝑡) = 𝑞(𝑥/𝑡). Inserting this solution form into the hyperbolic equation

(Eq. (2.3) with Ψ = 0) gives the relation:

𝑓 ′(𝑞(𝑥/𝑡))𝑞′(𝑥/𝑡) = 𝑥

𝑡
𝑞′(𝑥/𝑡). (3.8)

This equation is solved for 𝑞 using standard ODE methods as now we have a first order differential

equation of just 𝑞.

3.3 Wave Propagation

Throughout this paper we will sometimes use the standard flux difference form to solve SWE

but also the wave propagation algorithm. It is this last algorithm we give notation and reference to

here, as it is used in the actual numerical solvers.

Wave propagation is an algorithm [10] that uses the Jacobian of the hyperbolic equation and

its eigenvectors to construct speed (the eigenvalues) and waves (the eigenvectors) from a Riemann

problem (RP) and amasses the waves that contribute to the right state or the left called fluctuations.

Their direction is determined by the sign of the corresponding eigenvalues or the speeds. The

speeds are specially averaged eigenvalues of the left and right states and the waves are the corre-

sponding eigenvectors. A note to be made is that the difference between the two state variables 𝑄

on either side of a RP is decomposed with the eigenvectors, but here we decompose the difference

of flux vectors, which is sometimes called 𝑓 -wave propagation. This method has the added benefit

of always conserving mass, and we simply call this wave propagation.

3.3.1 1D Wave Propagation

The main part of the algorithm is taking the difference between the flux vectors of the right and

left state and decomposing it using the speeds and waves [31]. For a RP between 𝑞𝐿 , 𝑞𝑅, we have:

𝑀𝜔∑︁
𝑖=1

𝛽𝑖r𝑖 = 𝑓 (𝑞𝑅) − 𝑓 (𝑞𝐿), (3.9)
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where 𝛽𝑖 are the weights of the eigenvectors r𝑖 in the decomposition of the flux difference vector,

𝑓 (𝑞𝑅) − 𝑓 (𝑞𝐿), and 𝑀𝜔 is the number of eigenvectors and speeds. In 1D SWE, 𝑀𝜔 is generally 2,

although one can add another vector [14] and in 2D SWE, 𝑀𝜔 = 3.

In 1D, the Jacobian of 𝑓 (𝑞) takes the form

𝑓 ′(𝑞) =


0 1

−𝑢2 + 𝑔ℎ 2𝑢

 , (3.10)

whose eigenvectors r𝑖 take the form

r𝑖 =


1

𝜆𝑖

 ,
where 𝜆𝑖 is the speed. For our work, we use the Einfeldt speed [32], which is: 𝜆1 = min(𝑢𝐿 −√︁
𝑔ℎ𝐿 , 𝑢̂ −

√︃
𝑔ℎ), 𝜆2 = max(𝑢𝑅 −

√︁
𝑔ℎ𝑅, 𝑢̂ +

√︃
𝑔ℎ), where 𝑢𝐿/𝑅 is the velocity of the left/right

state, ℎ𝐿/𝑅 the height of left/right state, ℎ the arithmetic average of the left and right heights, and

𝑢̂ =
√
ℎ𝐿𝑢𝐿+

√
ℎ𝑅𝑢𝑅√

ℎ𝐿+
√
ℎ𝑅

, also called Roe average velocity. Using this speed avoids producing entropy

violating (i.e. nonphysical) solutions [33, 30].

Finally, we denote the right-going and left-going waves, respectively, as A+Δ𝑄 =
∑
𝑖:𝜆𝑖>0 𝛽𝑖r𝑖,

A−Δ𝑄 =
∑
𝑖:𝜆𝑖<0 𝛽𝑖r𝑖 . The right-moving waves are the addition of the decomposed eigenwaves

whose corresponding speed is positive and the left-moving waves are the addition of those waves

whose corresponding speed is negative. This means that in a regular grid, the update of a cell 𝑄𝑖

becomes:

𝑄𝑛+1
𝑖 = 𝑄𝑛𝑖 −

Δ𝑡

Δ𝑥
(A+Δ𝑄𝑖−1/2 + A−Δ𝑄𝑖+1/2),

where A+/−Δ𝑄𝑖−1/2 is the right or left fluctuations from the interface between cells 𝑞𝑖 and 𝑞𝑖−1.
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3.3.2 2D Wave Propagation

Let𝑄𝑖, 𝑗 denote the state variable [𝐻𝑖, 𝑗 , (𝐻𝑈)𝑖, 𝑗 , (𝐻𝑉)𝑖, 𝑗 ], 𝑓 (𝑞) the flux vector in the 𝑥-direction

and 𝑔(𝑞) the flux vector in the 𝑦-direction.

(𝑖, 𝑗)𝐹𝑖−1/2, 𝑗 𝐹𝑖+1/2, 𝑗

𝐺𝑖, 𝑗−1/2

𝐺𝑖, 𝑗+1/2

(a) Grid edges of cell (𝑖, 𝑗) and its flux notation

𝑓 (𝑄𝑖, 𝑗 ) ,
𝑔 (𝑄𝑖, 𝑗 )

𝑓 (𝑄𝑖−1, 𝑗 ) 𝑓 (𝑄𝑖+1, 𝑗 )

𝑔 (𝑄𝑖, 𝑗−1)

𝑔 (𝑄𝑖, 𝑗+1)

(b) Flux vectors used in wave propagation for blue cell

Figure 3.2: Flux scheme versus wave propagation

As shown in Fig. 3.2, instead of using fluxes at the edges of a cell, wave propagation linearly

decomposes the difference of flux vectors from either side of each edge (Fig. 3.2b). The 2D

Jacobians for 𝑓 (𝑞) and 𝑔(𝑞) are given by:

𝑓 ′(𝑞) =


0 1 0

−𝑢2 + 𝑔ℎ 2𝑢 0

−𝑢𝑣 𝑣 𝑢


, 𝑔′(𝑞) =


0 0 1

−𝑢𝑣 𝑣 𝑢

−𝑣2 + 𝑔ℎ 0 2𝑣.


(3.11)

The matrices used for the linear decomposition for flux vectors 𝑓 (𝑞) and 𝑔(𝑞) are given by the

eigenvectors of the above matrices:

A =


1 0 1

𝑈∗ −
√
𝑔𝐻∗ 0 𝑈∗ +

√
𝑔𝐻∗

𝑉∗ 1 𝑉∗


,

B =


1 0 1

𝑈∗ 1 𝑈∗

𝑉∗ −
√
𝑔𝐻∗ 0 𝑉∗ +

√
𝑔𝐻∗


, (3.12)

respectively, where 𝐻∗,𝑈∗, 𝑉∗ represent special averages between 𝑄𝑖, 𝑗 and neighbors, such as Roe

14



or Einfeldt average [32, 34]. The decomposition equations for the right and top edge are then

A𝛽 = 𝑓 (𝑄𝑖+1, 𝑗 ) − 𝑓 (𝑄𝑖, 𝑗 ) (3.13)

B𝛽 = 𝑔(𝑄𝑖, 𝑗+1) − 𝑔(𝑄𝑖, 𝑗 ), (3.14)

where 𝛽, 𝛽 ∈ R3.

The columns of A and B Eq. (3.12) are the eigenvectors of the Jacobians 𝑓 ′(𝑞) and 𝑔′(𝑞),

respectively. The eigenvalues corresponding to the 𝑝th column vector of A are {(𝜆𝐴)𝑝}3
𝑝=1 = {𝑈∗−

√
𝑔𝐻∗,𝑈∗,𝑈∗ +

√
𝑔𝐻∗}, and those corresponding to the 𝑝th column vector of B are {(𝜆𝐵)𝑝}3

𝑝=1 =

{𝑉∗ −
√
𝑔𝐻∗, 𝑉∗, 𝑉∗ +

√
𝑔𝐻∗}. Note that the second vector in the matrices above are the linearly

degenerate waves that carry the transverse momentum ℎ𝑢𝑣.

Let {(𝜆𝐴)𝑝,A(𝜆𝐴)𝑝 } and {(𝜆𝐵)𝑝,B(𝜆𝐵)𝑝 } represent the 𝑝th eigenvalue-eigenvector pair of the

Jacobians 𝑓 ′(𝑞) and 𝑔′(𝑞). Then we have the A-left and A-right fluctuation waves defined by

A−Δ𝑄𝑖+1/2, 𝑗 =
∑︁

𝑝:(𝜆𝐴)𝑝<0
𝛽𝑝A(𝜆𝐴)𝑝 (3.15)

A+Δ𝑄𝑖−1/2, 𝑗 =
∑︁

𝑝:(𝜆𝐴)𝑝>0
𝛽𝑝A(𝜆𝐴)𝑝 , (3.16)

where 𝛽 is the difference coefficient vector in Eq. (3.13).

The B-up and B-down fluctuation waves are given by:

B−Δ𝑄𝑖, 𝑗−1/2 =
∑︁

𝑝:(𝜆𝐵)𝑝<0
𝛽𝑝B(𝜆𝐵)𝑝 (3.17)

B+Δ𝑄𝑖, 𝑗+1/2 =
∑︁

𝑝:(𝜆𝐵)𝑝>0
𝛽𝑝B(𝜆𝐵)𝑝 , (3.18)

where 𝛽 is the difference coefficient vector in Eq. (3.14). The vectors in the summation 𝛽𝑝A(𝜆𝐴)𝑝

and 𝛽𝑝B(𝜆𝐵)𝑝 represent how much of the flux difference is carried in the 𝑝 eigenvector and are

called weight vectors 𝑊𝑝. The sign of the speed (𝜆𝐴/𝐵)𝑝 indicates the direction in which the flux
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difference is moved. Then the state update formula via the wave propagation method becomes:

𝑄𝑛+1
𝑖, 𝑗 = 𝑄𝑛𝑖, 𝑗 −

Δ𝑡

Δ𝑥
(A−Δ𝑄𝑖+1/2, 𝑗 + A+Δ𝑄𝑖−1/2, 𝑗 )

− Δ𝑡

Δ𝑦
(B−Δ𝑄𝑖, 𝑗+1/2 + B+Δ𝑄𝑖, 𝑗−1/2). (3.19)

Relationship between flux differencing form and wave propagation

Although this wave propagation algorithm is different from standard flux differencing method,

there is a relation between the two for hyperbolic conservation equations such as the SWE. In 1D

the relation between numerically approximated flux 𝐹𝑖−1/2 and the waves is given by: 𝐹𝑖−1/2 =

𝑓 (𝑞𝑖−1) + A−Δ𝑄𝑖−1/2, 𝐹𝑖−1/2 = 𝑓 (𝑞𝑖) − A+Δ𝑄𝑖−1/2 [10], which gives us:

𝐹𝑖+1/2 − 𝐹𝑖−1/2 = A−Δ𝑄𝑖+1/2 + A+Δ𝑄𝑖−1/2.

In 2D SWE, we have two sets of fluxes that contribute to the update of cell (𝑖, 𝑗), which we

denote 𝐹𝑖+1/2, 𝑗 , 𝐹𝑖−1/2, 𝑗 and 𝐺𝑖, 𝑗+1/2, 𝐺𝑖, 𝑗−1/2, and we have:

𝐹𝑖+1/2, 𝑗 − 𝐹𝑖−1/2, 𝑗 = A−Δ𝑄𝑖+1/2, 𝑗 + A+Δ𝑄𝑖−1/2, 𝑗

𝐺𝑖, 𝑗+1/2 − 𝐺𝑖, 𝑗−1/2 = B−Δ𝑄𝑖, 𝑗+1/2 + B+Δ𝑄𝑖, 𝑗−1/2.

Essentially, the wave propagation algorithm works because it is another way of approximating the

numerical fluxes 𝐹𝑖+1/2, 𝑗 , 𝐺𝑖, 𝑗+1/2 using spectral methods.

With this relation we can go back and forth from the flux difference form of the numerical

update to the wave propagation form akin to what is done in [35]. We use the flux difference

form to do conservation calculations later on in our ℎ-box methods and use the wave propagation

method for wave redistribution and implementation of examples. Also note that the terminology of

“flux" is used for flux difference form but “fluctuation" is used for the wave propagation algorithm,

but we will use them interchangeably.
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The reason for using the wave propagation method is that it is a versatile method that can also

be applied to nonconservative hyperbolic equations [10] and also an easily implemented method

as long as the decomposing matrices are known and well-behaved.

Source terms: bathymetric variation

Another merit of the wave propagation method, other than the guarantee of conservation, is

that presence of source terms is easily handled [31]. Suppose we have the hyperbolic equation

𝑞𝑡 + 𝑓 (𝑞)𝑥 = Ψ(𝑞),

as in Eq. (2.3). In our problems, we will have Ψ(𝑞) = [0,−𝑔ℎ𝑏𝑥], where 𝑏 is the bathymetry. All

we need to modify in our wave propagation method in order to handle bathymetric source terms is

by subtracting the discretization of the source term as follows:

2∑︁
𝑝=1

𝛽𝑝𝑟𝑝 = 𝑓 (𝑄𝑅) − 𝑓 (𝑄𝐿) − Δ𝑥Ψ(𝑄𝑅, 𝑄𝐿) (3.20)

where Ψ(𝑄𝑅, 𝑄𝐿) is approximated by some averaging of the bathymetric variation (slope, e.g.

𝑏𝑅−𝑏𝐿/Δ𝑥). This form of handling source terms can be hinted at by the following approximations:

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2

𝑞𝑡 ≈ (𝑄𝑛+1 −𝑄𝑛)/Δ𝑡∫ 𝑥𝑖+1/2

𝑥𝑖−1/2

𝑓 (𝑞)𝑥 − Ψ(𝑞) ≈ ( 𝑓 (𝑄𝑅) − 𝑓 (𝑄𝐿)) − Δ𝑥Ψ(𝑄)

Then, we can write Eq. (2.3) as

𝑞𝑡 + ( 𝑓 (𝑞)𝑥 − Ψ(𝑞)) = 0,

and treat
∫ 𝑥𝑖+1/2
𝑥𝑖−1/2

𝑓 (𝑞)𝑥 − Ψ(𝑞) as our “flux" and use wave propagation to approximate this flux via

linear, eigen-decomposition as shown in Eq. (3.20).
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3.3.3 Second order

Second order finite volume methods are made from using a linear approximation on each cell.

From the first order wave propagation method, however, we can easily move towards a second

order method by careful use of the speeds (eigenvalues) and the eigenbasis vectors. The wave

propagation algorithm thus provides an equivalent way of getting the higher order correction terms

necessary for a second order numerical method without approximating solution slopes [36, 33].

This is achieved by adding to the first order fluctuations a correction term 𝐹̃𝑖±1/2, 𝑗 , 𝐺̃𝑖, 𝑗±1/2:

𝑄𝑛+1
𝑖, 𝑗 = 𝑄𝑛𝑖, 𝑗 −

Δ𝑡

Δ𝑥
(A−Δ𝑄𝑖+1/2, 𝑗 + A+Δ𝑄𝑖−1/2, 𝑗 ) −

Δ𝑡

Δ𝑥
(𝐹̃𝑖+1/2, 𝑗 − 𝐹̃𝑖−1/2, 𝑗 )

− Δ𝑡

Δ𝑦
(B−Δ𝑄𝑖, 𝑗+1/2 + B+Δ𝑄𝑖, 𝑗−1/2) −

Δ𝑡

Δ𝑦
(𝐺̃𝑖, 𝑗+1/2 − 𝐺̃𝑖, 𝑗−1/2). (3.21)

The correction terms are then given by the following:

𝐹̃𝑖−1/2, 𝑗 =
1
2

𝑚∑︁
𝑝=1

| (𝜆𝐴)𝑝 |
(
1 − Δ𝑡

Δ𝑥
| (𝜆𝐴)𝑝 |

)
𝛽𝑝A(𝜆𝐴)𝑝 , (3.22)

𝐺̃𝑖, 𝑗−1/2 =
1
2

𝑚∑︁
𝑝=1

| (𝜆𝐵)𝑝 |
(
1 − Δ𝑡

Δ𝑥
| (𝜆𝐵)𝑝 |

) ˜̂𝛽𝑝B(𝜆𝐵)𝑝 , (3.23)

where 𝑚 is the dimension of the eigenspectrum, and the tilde over 𝛽𝑝, 𝛽𝑝 is a limited version of the

decomposition coefficient which we discuss in the next subsection. In a linear hyperbolic system

𝑞𝑡 + 𝐿𝑞𝑥 = 0, with 𝐿 some constant matrix, this formulation Eq. (3.21) (without the limiting over

the coefficients) can be shown to be equal to the Lax-Wendroff method in each dimension [10].

Wave limiting

Limiting of gradients or slopes in the linear approximations is necessary in the second order

methods in order to prevent numerical instability such as oscillations, a common problem in higher

accuracy finite volume methods. The tilde over the decomposition coefficients 𝛽𝑝, ˜̂𝛽𝑝 denote lim-

ited decomposition coefficients used in wave propagation. Instead of limiting slopes, these work
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by limiting the eigenbasis vectors decomposed from the flux vector differences from the Riemann

problem. The limiting of the 𝑝𝑡ℎ element of these coefficients are performed by comparing the

the magnitude of 𝑝𝑡ℎ eigenvectors arising from neighboring Riemann problems and applying the

typical limiting functions to the ratio of magnitudes.

In symbols, we have the following: for a given Riemann problem between 𝑄𝑖−1, 𝑗 and 𝑄𝑖, 𝑗 , let

𝑊
𝑝

𝑖−1/2, 𝑗 = 𝛽𝑝𝐴(𝜆𝐴)𝑝 (or 𝛽𝑝𝐵(𝜆𝐵)𝑝 ), or the weight vector of the flux difference. Then we have

𝜃
𝑝

𝑖−1/2, 𝑗 =
𝑊
𝑝

𝐼−1/2, 𝑗 ·𝑊
𝑝

𝑖−1/2, 𝑗

∥𝑊 𝑝

𝑖−1/2, 𝑗 ∥2 (3.24)

𝛽𝑝 = 𝜙(𝜃𝑝𝑖−1/2, 𝑗 )𝛽𝑝, (3.25)

where 𝐼 = 𝑖 − 1 if (𝜆𝐴)𝑝 > 0 and 𝐼 = 𝑖 + 1 if (𝜆𝐴)𝑝 < 0, and 𝜙 : R → R is a typical limiting

function, such as minmod, MC, etc. The parameter 𝜃𝑝
𝑖−1/2, 𝑗 is the component of the projection

vector
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
proj𝑊 𝑝

𝑖−1/2, 𝑗
𝑊
𝑝

𝐼−1/2, 𝑗 and measures how much the neighboring weight vector aligns with the

weight vector at the interface. This roughly estimates how smooth the solution is at the interface

and is the parameter used to determine how much limiting should be applied in case of a lower

value, which shows steep discontinuity of solution.

In our problems, we apply the minmod limiter on all the horizontal and vertical grid edges. The

minmod limiter is given by:

𝜙𝑚𝑖𝑛𝑚𝑜𝑑 (𝜃) = max(0,min(1, 𝜃)). (3.26)

Minmod limiters are symmetric: 𝜙𝑚𝑖𝑛𝑚𝑜𝑑 (1/𝜃) = 𝜙𝑚𝑖𝑛𝑚𝑜𝑑 (𝜃)/𝜃, a desired property especially as

our 𝑉-barrier problem is symmetric.

We note that the wave limiting method described above is suitable only for Cartesian edges,

where the neighboring index 𝐼 is defined. For the barrier cut edge, we will resort to using gradient

limiters as we will need to employ limiters suitable for non-Cartesian cell edges. We discuss further

in the cell merging method, where the second order method is developed.
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A+Δ𝑄𝑖−1/2, 𝑗

B+A+Δ𝑄𝑖−1/2, 𝑗

B−A+Δ𝑄𝑖−1/2, 𝑗

𝑖

𝑗

Figure 3.3: Transverse waves from edge (𝑖 − 1/2, 𝑗) affect cells (𝑖, 𝑗 + 1) and (𝑖, 𝑗 − 1).

3.3.4 Transverse wave propagation

Another way to achieve higher (than one) order accuracy in our numerical solutions is by

introducing transverse solvers. The waves generated at the interface of two states as described

above are directed normal to the interface, affecting those two states. They are thus called normal

waves. However, each of these normal waves can further be decomposed in the direction parallel

to the interface, i.e. transverse, and thus affecting the cells diagonally above and below the original

cells (Fig. 3.3).

Essentially, this amounts to solving another linear equation as follows:

B ˜̂𝛽 = A+Δ𝑄 (3.27)

B+A+Δ𝑄 =
∑︁
𝜆𝐵>0

˜̂𝛽B𝜆𝐵 (3.28)

B−A+Δ𝑄 =
∑︁
𝜆𝐵<0

˜̂𝛽B𝜆𝐵 . (3.29)

The vector B±A+Δ𝑄 is called a transverse wave of A+Δ𝑄. (We omit indices for simplicity in our

notation.) The same can be carried out for the transverse wave of A−Δ𝑄. Note that transverse

solver does not decompose a difference of wave vectors, but a single wave vector, e.g. either

A+Δ𝑄 or A−Δ𝑄. Note that in Fig. 3.3, our transverse waves would be used to update 𝑄𝑖, 𝑗±1.

For our cut cell methods, we use the transverse calculations away from the cut interface. This
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is because at the cut barrier interface, another method called wave redistribution for fluctuation

calculation would need to be employed, which we discuss in the next chapter. Not employing the

transverse solver at the barrier amounts to using wave redistribution only once. As we will see,

however, using transverse solvers increases order of accuracy by approximately 0.5.

3.3.5 CFL Condition

Now with the notations of the finite volume method explained, we finally describe the Courant-

Friedrichs-Lewy (CFL) condition as this is what necessitates the cut cell method on a restricted grid

cell. The condition states that fluctuation cannot propagate into a cell more than its size. In the 1D

problem, we have

𝜆Δ𝑡

Δ𝑥
≤ 1, (3.30)

where 𝜆 denotes the speed of a wave, Δ𝑡 the time duration of the wave propagated, and Δ𝑥 the width

of a cell. This CFL number (the left hand term) can be seen to appear in the wave propagation form

Eq. (3.15) to Eq. (3.19): the 𝜆𝐴/𝐵 in the summation terms will multiply with the Δ𝑡/Δ𝑥 term in

front. Essentially, we want to only take fraction of each weight vector𝑊𝑝 = 𝛽𝑝A𝑝 (or 𝛽𝑝B𝑝).

In 2D, we have

𝜆𝐴Δ𝑡

Δ𝑥
+ 𝜆𝐵Δ𝑡

Δ𝑦
≤ 1, (3.31)

where 𝜆𝐴, 𝜆𝐵 are speeds of the waves in 𝑥 direction and 𝑦 direction, respectively, and Δ𝑡,Δ𝑥,Δ𝑦

denote the time step and the width and height of a grid cell. Usually each term of the sum in

Eq. (3.31) is limited to 0.5 in order to ensure the condition is met.
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Chapter 4: Wave Redistribution

In order to compute the fluctuation at the barrier edge, we develop a special method called wave

redistribution (WR). This method is repeatedly used in all our cut cell methods, and we devote this

section to develop the method. The 2D methods to be presented in this chapter are original work

of the author.

4.1 1D Wave redistribution

The method in 1D was originally developed in [37]. The initial idea for this method can be seen

by considering the following. The arbitrary placement of a barrier on the grid (Fig. 2.1) creates

small cells iw and iw+1 with sizes 𝛼 > 0 and 1 − 𝛼. In other words, when 𝛼 = 0, this means that

the barrier is directly on a grid edge. WR was developed to handle the case 𝛼 = 0. However, as

will be seen in our cut cell methods, WR is used not only to solve the case when 𝛼 = 0, but in

general to set the flux at the barrier.

Since our barrier has no width, it cannot be treated as a cell with a bathymetric jump. The

fluctuation between the cells on each side of the barrier must be calculated differently than that

arising from a standard RP. It must mimic fluctuation that arise from hitting, reflecting, and/or

overtopping a barrier with height ℓ. WR accomplishes this by redistributing waves arising from

two ghost Riemann problems.

We will use the setup notation shown in Fig. 2.1 and denote cell averages of 𝑞 as 𝑄 and bathy-

metric averages as 𝐵. The ghost problems of WR are set by introducing a middle, third ghost cell

𝑄∗ representing the barrier, in addition to the two cells 𝑄𝑖𝑤, 𝑄𝑖𝑤+1 on either side of the barrier.

We denote 𝑄𝐿
𝑖𝑤+1/2 = 𝑄𝑖𝑤 and 𝑄𝑅

𝑖𝑤+1/2 = 𝑄𝑖𝑤+1 to highlight the fact that we are calculating the

fluctuation at the barrier edge.
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𝑄𝑅
𝑖𝑤+1/2𝑄𝐿

𝑖𝑤+1/2 𝑄∗

Figure 4.1: Introduction of ghost cell 𝑞∗ in WR. The red hatched cell represents the barrier ghost
cell.

The ghost cell average 𝑄∗ is set as a cell with bathymetry jump the size of the barrier, ℓ, and

with 𝑄 = 0, i.e. dry state, to mimic a barrier with no water on top (left of Fig. 4.2):

𝑄∗ =


0

0


𝐵∗ = min(𝐵𝑖𝑤, 𝐵𝑖𝑤+1) + ℓ.

There is a special case where 𝑄∗ is set differently, however. This is when water height on both

sides of the barrier is higher than ℓ. This may be the result of there being simply more water on

both sides of barrier, or the result of overtopping from both sides. In either case, we still set the

bathymetry 𝐵∗ = min(𝐵𝑖𝑤, 𝐵𝑖𝑤+1) + ℓ, but we set 𝑄∗ as

𝑄∗ =


min(ℎ𝐿

𝑖𝑤+1/2 − 𝐵
∗, ℎ𝑅

𝑖𝑤+1/2 − 𝐵
∗)

min(ℎ𝑢𝐿
𝑖𝑤+1/2, ℎ𝑢

𝑅
𝑖𝑤+1/2)


where 𝑄𝐿/𝑅

𝑖𝑤+1/2 = [ℎ𝐿/𝑅
𝑖𝑤+1/2, ℎ𝑢

𝐿/𝑅
𝑖𝑤+1/2]. The height being set here is the minimum of the “skimmed

crop” of the two ℎ-box heights off the barrier (Fig. 4.2), and the momentum is the minimum of the

two ℎ-box momentum. This is to ensure a continuous flow at the top of the barrier arising from the

overtopping water. Furthermore, in the case where barrier is submerged and the water is at rest,

not having this ghost water state would evidently create fictitious waves, as the left and right states

would try to fill in the void.
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𝑄𝑅
𝑖𝑤+1/2𝑄𝐿

𝑖𝑤+1/2 𝐵∗

𝑄∗ = 0

𝑄𝑅
𝑖𝑤+1/2𝑄𝐿

𝑖𝑤+1/2 𝐵∗

𝑄∗

Figure 4.2: Cases of ghost cell 𝑞∗ in WR. The red hatched cell here represents the ghost bathymetry
and the aqua hatched cell represents the ghost water state.

Finally we discuss how to determine whether water overtops and how to redistribute the waves

arising from the ghost problems. Whether water overtops from either side or not is calculated

by solving a Riemann problem between 𝑄𝐿/𝑅
𝑖𝑤+1/2 with its inverted momentum state, R(𝑄𝐿/𝑅

𝑖𝑤+1/2) =

[ℎ𝐿/𝑅
𝑖𝑤+1/2, -(ℎ𝑢)

𝐿/𝑅
𝑖𝑤+1/2]. The intermediate height ℎ𝑚 arising from this RP is then compared to the

barrier height 𝐵∗, and if ℎ𝑚 is higher than 𝐵∗, we have overtopping, and if not, we have a reflection.

The two ghost RP’s are solved by the wave propagation algorithm, which gives us:

2∑︁
𝑖=1

𝛽𝑖r𝑖 = 𝑓 (𝑄∗) − 𝑓 (𝑄𝐿
𝑖𝑤+1/2) − Ψ𝐿

2∑︁
𝑖=1

𝛽𝑖 r̃𝑖 = 𝑓 (𝑄𝑅
𝑖𝑤+1/2) − 𝑓 (𝑄∗) − Ψ𝑅,

where {r𝑖, 𝜆𝑖}, {r̃𝑖, 𝑠𝑖} are the eigenvectors and their corresponding speeds arising from each RP

and Ψ𝐿 = [0,−𝑔(𝐵∗− 𝑏𝐿) (ℎ𝐿 + ℎ∗)/2] and Ψ𝑅 = [0,−𝑔(𝑏𝑅 −𝐵∗) (ℎ∗ + ℎ𝑅)/2]. Then we introduce

a new set of eigenvectors {r̂𝑖}𝑖=1,2 and eigenvalues {𝑠𝑖}𝑖=1,2 which will propagate the mass and

momentum transfer generated by both ghost RPs. For our new eigenvalues 𝑠𝑖, we set them as

averages of the ghost speeds, which gives us:

𝑠𝑖 =
1
2
(𝜆𝑖 + 𝑠𝑖) (4.1)

r̂𝑖 =


1

𝑠𝑖

 . (4.2)
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So redistribution solves: [
r1 |r2 |r̃1 |r̃2

]
𝛽1 =

[
r̂1 |r̂2

]
𝛽2,

where the boldfaced r𝑖, r̃𝑖, r̂𝑖 are column eigenvectors, 𝛽1 = [𝛽1, 𝛽2, 𝛽1, 𝛽2] from the two ghost RP

decompositions, and 𝛽2 ∈ R2 are the new weights that the new eigenvectors r̂𝑖 will take. Then we

let

A+Δ𝑄𝑖𝑤+1/2 =
∑︁
𝑖: 𝑠𝑖>0

𝛽𝑖2r̂𝑖

and

A−Δ𝑄𝑖𝑤+1/2 =
∑︁
𝑖: 𝑠𝑖<0

𝛽𝑖2r̂𝑖 .

For 𝑠𝑖 = 0, we divide 𝛽𝑖2r̂𝑖 into half and distribute each to A+Δ𝑄𝑖𝑤+1/2 and A−Δ𝑄𝑖𝑤+1/2.

4.2 2D Wave Redistribution

In 2D, wave redistribution works in the same way as in 1D, with the exception of the additional

transverse element now being carried by the second linearly degenerate eigenvector of the flux

Jacobian 𝑓 ′(𝑞) and 𝑔′(𝑞) (Eq. (3.12)). As in 1D, a ghost state is introduced that represents the

barrier. The determination of overtopping is done in the same way by using the normal momentum

to the barrier. We present here therefore the ghost state and the new set of eigenvectors used to

redistribute the waves.

Without loss of generality, consider WR between cells 𝑞𝑖, 𝑗 and 𝑞𝑖+1, 𝑗 where the barrier lies on

their shared edge 𝑥 = 𝑥𝑖+1/2 (see Fig. 4.3).

𝑥 = 𝑥𝑖+1/2

𝑞𝑖+1, 𝑗𝑞𝑖, 𝑗 𝑞∗𝑞𝑖, 𝑗 𝑞𝑖+1, 𝑗

Figure 4.3: Example of WR in 2D between cells 𝑞𝑖, 𝑗 and 𝑞𝑖+1, 𝑗 . On the left is shown barrier on
edge 𝑥 = 𝑥𝑖+1/2 and on the right is shown the ghost cell setup.

In all cases except when water overtops from both sides, we set𝑄∗ = 0 and 𝐵∗ = min(𝐵𝑖, 𝑗 , 𝐵𝑖+1, 𝑗 )
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+ℓ, where ℓ is the length of the barrier. In case where water overtops from both sides, we set

𝑄∗ =


min(ℎ𝑖, 𝑗 − 𝐵∗, ℎ𝑖+1, 𝑗 − 𝐵∗)

min(ℎ𝑢𝑖, 𝑗 , ℎ𝑢𝑖+1, 𝑗 )

min(ℎ𝑣𝑖, 𝑗 , ℎ𝑣𝑖+1, 𝑗 )


𝐵∗ = min(𝐵𝑖, 𝑗 , 𝐵𝑖+1, 𝑗 ) + ℓ.

Finally, let {𝜆𝑖, r𝑖} and {𝑠𝑖, r̃𝑖} be the 𝑥 direction eigenpairs arising from the two RPs. This

allows us to solve for the coefficients 𝛽, 𝛽:

[r1 |r2 |r3]𝛽 = 𝑓 (𝑄∗) − 𝑓 (𝑄𝑖, 𝑗 ) − Ψ𝐿 (4.3)

[r̃1 |r̃2 |r̃3]𝛽 = 𝑓 (𝑄𝑖+1, 𝑗 ) − 𝑓 (𝑄∗) − Ψ𝑅, (4.4)

where Ψ𝐿/𝑅 is the bathymetric variation between 𝐵∗ and 𝐵𝑖/𝑖+1, 𝑗 .

We then set the eigenvectors for redistribution as: r̂1 = [1, 𝑠1, 𝑣̂], r̂2 = [0, 0, 1], and r̂3 =

[1, 𝑠3, 𝑣̂], where 𝑠𝑖 = 1
2 (𝑠𝑖 + 𝜆𝑖) are the speeds and 𝑣̂ is the Roe average of the transverse veloc-

ities. Then the following equation is solved for 𝛽 ∈ R3, which are the new redistributed wave

coefficients:

[r𝑖 |r̃𝑖] (𝛽 : 𝛽) = [r̂𝑖]𝛽,

where 𝛽 : 𝛽 is the concatenated vector of eigendecomposition coefficients from the two RPs (total

of 6 values) shown in the right subfigure of Fig. 4.3. Finally we collect the right going components

with themselves and the left going ones with themselves:

A+Δ𝑄𝑖+1/2, 𝑗 =
∑︁
𝑝:𝑠𝑝>0

𝛽𝑝𝑟𝑝

A−Δ𝑄𝑖+1/2, 𝑗 =
∑︁
𝑝:𝑠𝑝<0

𝛽𝑝𝑟𝑝 .

26



4.2.1 2D Rotated Wave redistribution

Now we discuss how to set the fluctuation at the barrier edge that is at an angle to the grid.

Later in Section 7.1.2 we will describe how to do a second order correction at the barrier edge.

On a cut cell (𝑖, 𝑗), we use 𝑄ℎ
𝑖, 𝑗

, which we denote as the small cells’ state averages as they are

on either side (ℎ = 𝐿 or𝑈: see Fig. 4.4) of the barrier edge and rotate them as follows:

𝑄̆ℎ
𝑖, 𝑗 = 𝑅𝑖, 𝑗𝑄

ℎ
𝑖, 𝑗 = [𝐻, 𝐻𝑈̆, 𝐻𝑉̆], (4.5)

and

𝑅𝑖, 𝑗 =


1 0 0

0 𝑛̂1 𝑛̂2

0 𝑡1 𝑡2


.

The rotation vectors are simply the orthonormal pair with respect to the barrier Fig. 4.4.

𝑛̂

𝑡

𝑄𝑈

𝑄𝐿

Figure 4.4: Rotation vectors used to rotate states: orthonormal pair.

Once we have rotated the states, we apply the WR algorithm as before with the ghost states

being set in the same way. Namely, we have the following decompositions to perform:

A𝐿𝛽 = 𝑓 (𝑄̆𝐿
𝑖, 𝑗 ) − 𝑓 (𝑄∗) − Ψ𝐿 (4.6)

A𝑈𝛽 = 𝑓 (𝑄∗) − 𝑓 (𝑄̆𝑈𝑖, 𝑗 ) − Ψ𝑈 , (4.7)

where A𝐿 is the matrix similar to Eq. (3.12) for the Riemann problem between 𝑄̆𝐿
𝑖, 𝑗

and 𝑄∗ with

associated eigenvalues and eigenvectors {𝜆𝑖
𝐿
, r𝑖
𝐿
} and A𝑈 is that for the Riemann problem between
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𝑄̆𝑈
𝑖, 𝑗

and 𝑄∗ with eigenvalues and eigenvectors {𝜆𝑖
𝑈
, r𝑖
𝑈
}. Without loss of generality, we choose the

Jacobian form 𝑓 ′(𝑞) for A, considering the rotated normal direction to be the (rotated) 𝑥 direction.

The terms Ψ𝐿 and Ψ𝑈 represent the source term vector as before.

Then wave redistribution sets a new set of eigenvalues and eigenvectors {𝑠𝑖, r𝑖} as

𝑠𝑖 =
1
2
(𝜆𝑖𝑈 + 𝜆𝑖𝐿) (4.8)

r̂𝑖 = [1, 𝑠𝑖, 𝑣̄] for 𝑖 = 1, 3 (4.9)

r̂2 = [0, 0, 1], (4.10)

where 𝑣̄ = 1
2 (𝑉̆

𝐿 + 𝑉̆𝑈) (or the Roe average can be taken instead).

Finally, wave redistribution solves

[A𝐿 ∥A𝑈] (𝛽 : 𝛽) = A𝛽, (4.11)

where [A𝐿 ∥A𝑈] is the augmented matrix of two matrices A𝐿 and A𝑈 , 𝛽 : 𝛽 is the augmented

vector of coefficient vectors from the two RPs, and A is the matrix [r̂1, r̂2, r̂3]. The coefficient

vector 𝛽 is the unknown to be solved for and once solved, we have for our redistributed waves at

the barrier edge,

A+Δ𝑄̆𝑖, 𝑗 =
∑︁
𝑝:𝑠𝑝>0

𝛽𝑝 r̂𝑝 (4.12)

A−Δ𝑄̆𝑖, 𝑗 =
∑︁
𝑝:𝑠𝑝<0

𝛽𝑝 r̂𝑝 . (4.13)

Once we have computed the positive and negative fluctuations arising from the rotated Rie-

mann problem, we follow the algorithm in [27] and rotate them back into the original coordinate

directions by the following linear transformation:

A±Δ𝑄𝑖, 𝑗 = 𝑅
𝑇
𝑖, 𝑗A±Δ𝑄̆𝑖, 𝑗 . (4.14)
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Chapter 5: H-box Methods

The ℎ-box method was originally developed in [8]. Like most cut cell methods, this method

was first applied to solid embedded boundary problems and achieves second order accuracy at the

boundary as well as in the interior for advection problems [7]. It works by enlarging the domain of

dependence in calculation of fluxes by creating on either side of a cut cell edge a “box" of length

ℎ, which is either Δ𝑥 or some specially derived length dependent on the direction of flow.

We attempt to solve our problem using ℎ-box methods. The differences between this work

and that in [7] and other embedded boundary grid problems are (1) the extra flux condition at the

boundary that allows for mass transfer across it and (2) the relative simplicity of the proposed

method. The proposed method provides a simpler way to solve the embedded grid and small

cell problem than previously developed methods such as the large time stepping method, which

includes multi-step updates, or the original ℎ-box method, which involves the generation of many

ℎ-boxes at the edges of small cells [7, 17, 29].

5.1 Prior Work

5.1.1 Large Time Stepping Method in 1D

A barrier problem in 1D with cut cell has been solved [37] using large time stepping method

(LTS) [17]. This is an ℎ-box type method, and we present the work briefly here to give background

of what has been done and what added benefit we provide with our work, namely the simplicity of

our algorithm.

LTS is a very complicated algorithm, involving multi-step updates. The idea is to take small

incremental time steps Δ𝑡 on each side of the barrier when updating the cut cells (see Fig. 5.1),

according to the CFL condition 𝑠Δ𝑡
Δ𝑥𝑖

< 1, where 𝑠 is the speed of a wave and Δ𝑥𝑖 the size of cell 𝑖.
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Since one side of the barrier is larger than the other, this means that CFL violation does occur on

the smaller cell. However, the fluxes at cut cell edges are used to update an extended average off

the barrier cut called ℎ-box is to avoid a CFL violation. This ℎ-box is also used to find the flux or

fluctuation at the barrier. Essentially the LTS method handles the small cell problem by tracking

the fluxes’ movement in incremental time periods. This is done until the incremental time periods

sum up to a full time step Δ𝑡 and the incrementally updated ℎ-box averages are used to produce a

full time step update, which was not allowed for the small cells.

𝑖𝑤 + 1/2

𝛼Δ𝑥 (1 − 𝛼)Δ𝑥

𝑖𝑤 − 3/2 𝑖𝑤 − 1/2 𝑖𝑤 + 3/2 𝑖𝑤 + 5/2
𝑄̂𝑅

𝑖𝑤+1/2(Δ𝑡)𝑄̂𝐿
𝑖𝑤+1/2(Δ𝑡)

Δ𝑡
Δ𝑡2

Δ𝑡1

Figure 5.1: LTS Schematics: two small updates are made before the full time step update. The
green dashed line corresponds to A+Δ𝑄𝑖𝑤−1/2, the two black lines A±Δ𝑄𝑖𝑤+1/2 and the magenta
line A−Δ𝑄𝑖𝑤+3/2.

We refer the reader to [37] for details but offer a two-increment update for the small cell 𝑖𝑤.

Analogous update must be done for cell 𝑖𝑤+1. Important features here are the increment Δ𝑡1, which

is the maximum time step allowed for small cell 𝑖𝑤 and increment Δ𝑡2, which is the maximum time

step allowed for small cell 𝑖𝑤+1. Once each time increment Δ𝑡 is taken to update the cells, a new ℎ-

box average update 𝑄̂𝐿/𝑅
𝑖𝑤+1/2(Δ𝑡) is calculated to update the fluctuation at the wall. The superscript

Δ𝑡𝑖 in Eq. (5.1) indicates the updated speed or wave after that increment, and the absence of the

superscript indicates the speed and wave at time 𝑡𝑛. Also, 𝜆𝑖 is the left or right (𝑖 = 1, 2) speed of
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the waves at the wall:

𝑄𝑛+1
𝑖𝑤

= 𝑄𝑛
𝑖𝑤

− Δ𝑡1
𝛼Δ𝑥

A+Δ𝑄𝑖𝑤−1/2

− Δ𝑡

𝛼Δ𝑥

(
min(−𝜆1Δ𝑡, 𝛼Δ𝑥)

−𝜆1Δ𝑡
A−Δ𝑄𝑖𝑤+1/2

)
− Δ𝑡 − Δ𝑡1

𝛼Δ𝑥

(min(−𝜆Δ𝑡11 (Δ𝑡 − Δ𝑡1), 𝛼Δ𝑥)
−𝜆Δ𝑡11 (Δ𝑡 − Δ𝑡1)

A−Δ𝑄Δ𝑡1
𝑖𝑤+1/2

)
− Δ𝑡 − Δ𝑡2

𝛼Δ𝑥

(min(−𝜆Δ𝑡21 (Δ𝑡 − Δ𝑡2), 𝛼Δ𝑥)
−𝜆Δ𝑡21 (Δ𝑡 − Δ𝑡2)

A−Δ𝑄Δ𝑡2
𝑖𝑤+1/2

)
. (5.1)

The first fractional term Δ𝑡1
𝛼Δ𝑥

A+Δ𝑄𝑖𝑤−1/2 comes from the right fluctuation at edge 𝑖𝑤 − 1/2; the

second fractional term is from left wave of the initial WR at the barrier, the third term is from left

wave of the second WR (since the right wave from 𝑖𝑤 − 1/2 hits the barrier); and the last term

arises from left wave of third WR (since the left wave form 𝑖𝑤 + 3/2 hits the barrier).

5.1.2 𝐻-box method in 2D

Finally we conclude this section with a brief introduction to the original ℎ-box method in 2D

as this will later contrast to our method in 2D. For the method in 1D we refer readers to [7]. The

method is best described with the help of a diagram, which shows wall-like embedded boundaries

(Figs. 5.2 and 5.3).

The ℎ-box length can be set as the regular grid size ℎ = Δ𝑥 = Δ𝑦 (assuming uniform grid

for simplicity) and the values that each ℎ-box takes is the volume weighted average of the cells it

covers, rotated with respect to boundary’s normal and transverse direction. The normal ℎ-box cells

that go into the boundary (colored black in Fig. 5.2) are set by negating the rotated normal velocity

of the small cell (colored yellow in same figure), and the overall value in the whole ℎ-box cell

is again weighted by volume [4] with this negated average. Once the Riemann problems in both

normal and transverse directions are computed, the resulting fluxes are combined and appropriately

rotated back in the original grid directions (for details refer to [7]), and the small cell is updated

using those fluxes.
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Figure 5.2: Diagram showing example of ℎ-boxes used in setting normal (to boundary) direction
flux/fluctuation at edges of yellow cell. The setup is a 2D grid with a wall-like embedded boundary.
The blacked out portions of the ℎ-boxes are the ghost cell portions where the normal velocity of
the yellow cell with respect to the wall is negated. The diagram above shows the normal ℎ-boxes
associated with the non-barrier edges, while the one below those for the barrier edge.

32



Figure 5.3: Diagram showing example of ℎ-boxes used in setting transverse (to boundary) direction
flux/fluctuation at edges of yellow cell. Two pairs of ℎ-boxes are shown here on the horizontal and
vertical grid edge.

The stability of the method is guaranteed by the overlap of the ℎ-boxes (consider the three pairs

of normal ℎ-boxes in Fig. 5.2, for example), which leads to a cancellation property in a cell 𝑖:

∮
𝑆𝑖

( 𝑓 (𝑞) + 𝑔(𝑞)) · 𝑛 𝑑𝑆 = 𝑂 ( |𝑉𝑖 |)

𝑂 ( |𝑉𝑖 |) << 1, (5.2)

where 𝑞 represents the ℎ-box state averages.

This means that the flux differences become on the order of the size of the small cell, which

allows for a controlled update when taking volume average over the net fluxes. The flux differences

are as small as the size of the cell due to the Lipschitz continuity of the numerical fluxes:

|𝐹 (𝑄𝑖, 𝑄 𝑗 ) − 𝐹 (𝑄 𝑗 , 𝑄𝑘 ) | < 𝐾 | max( |𝑄𝑖 −𝑄 𝑗 |, |𝑄 𝑗 −𝑄𝑘 |),
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𝐹𝑖𝑤−1/2𝐹𝑖𝑤−3/2

𝐹𝑖𝑤+1/2

𝐹𝑖𝑤+3/2 𝐹𝑖𝑤+5/2

𝑖𝑤 𝑖𝑤 + 1𝑖𝑤 − 1 𝑖𝑤 + 2𝑖𝑤 − 2 𝑖𝑤 + 3𝑖𝑤 − 3

𝑄̂𝑅

𝐺1/2
𝑄̂𝑅𝑅𝑄̂𝐿

𝐺−3/2 𝐺−1/2𝐺−5/2 𝐺3/2
𝑄̂𝐿𝐿

Figure 5.4: The double ℎ-boxes off the barrier in 1D setup. The 𝐹𝑖 denote the fluxes at the physical
grid edges, while 𝐺𝑖 denote the fluxes between the ℎ-boxes.

where 𝐾 is some constant and 𝑄𝑖, 𝑄 𝑗 , 𝑄𝑘 are state averages for neighboring cells. Since the ℎ-box

averages are overlapping, the term on the right hand side will be small. One can now see why

enlarging the domain of dependence by using ℎ-boxes is useful in the calculation of the fluxes at

the edges.

We show the original 2D ℎ-boxes and mention these properties for comparison with our new

method. We highlight the fact that for the original ℎ-box method, there are numerous ℎ-boxes (e.g.

Figs. 5.2 and 5.3) that need to be calculated, but as will be seen, our new method only calculates the

normal ℎ-box at the boundary edge and instead creates a grid along the boundary. Also, because

of this absence of creating ℎ-boxes on every edge, our new method will not explicitly exhibit

cancellation property but still use the enlarging of domain of dependence for stability.

5.2 1D problem with a double ℎ-box method

Now we present the new method in solving the stated 1D problem, in contrast to the LTS

method. Instead of tracking the waves, we simply introduce two ℎ-boxes off the barrier in both

directions (see Fig. 5.4).

The general idea of the double ℎ-box method is that we extend enough to cover the cut cells and

update the ℎ-boxes and the corresponding physical grid cells according to the ℎ-box fluctuations.

The LTS method is accurate but cumbersome, and the double ℎ-box method tries to find the balance
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between accuracy and complexity. Namely, the double ℎ-box method effectively pushes away the

cut cell edges from the barrier interface. Consider 𝐹𝑖𝑤−1/2 in Fig. 5.4 for example. The right wave

from this edge will reach the barrier edge in a short time Δ𝑡𝑠. However, the wave from ℎ-box edge

𝐺−3/2 approximates this wave further away and allows for an update using regular time step Δ𝑡.

The ℎ-box values 𝑄̂ are again simply volume weighted averages of the underlying cells at time

𝑡𝑛 and update the physical grid cells proportionally by volume:

𝑄̂𝐿𝐿 = (1 − 𝛼)𝑄𝑖𝑤−2 + 𝛼𝑄𝑖𝑤−1

𝑄̂𝐿 = (1 − 𝛼)𝑄𝑖𝑤−1 + 𝛼𝑄𝑖𝑤

𝑄̂𝑅 = (1 − 𝛼)𝑄𝑖𝑤+1 + 𝛼𝑄𝑖𝑤+2

𝑄̂𝑅𝑅 = (1 − 𝛼)𝑄𝑖𝑤+2 + 𝛼𝑄𝑖𝑤+3.

Once ℎ-box averages are set, standard RPs are solved between 𝑄̂𝐿 and 𝑄̂𝐿𝐿 and between 𝑄̂𝑅

and 𝑄̂𝑅𝑅 to set 𝐺−3/2, 𝐺1/2, respectively. Between 𝑄̂𝐿 and 𝑄̂𝑅, WR is used to obtain right and

left fluctuations, which set 𝐺−1/2 and also 𝐹𝑖𝑤+1/2. The only remaining fluxes to be set are at the

leftmost and rightmost edges of the ℎ-boxes denoted 𝐺−5/2, 𝐺3/2 in Fig. 5.4.

To determine these outermost fluxes, we use the conservation principle. The conservation

principle is that we need to have the same mass at time 𝑡𝑛+1 via the regular flux differencing update

as at time 𝑡𝑛+1 via the ℎ-box update, given a large enough 𝑥-axis window (large enough range

disallowing outflow of mass under CFL condition).

The updated mass at time 𝑡𝑛+1 of the surrounding cells near the barrier using standard flux

differencing is given by:

𝑖𝑤+4∑︁
𝑖=𝑖𝑤−3

𝛼𝑖𝑄
𝑛+1
𝑖 =

𝑖𝑤+4∑︁
𝑖=𝑖𝑤−3

𝛼𝑖𝑄
𝑛
𝑖 −

Δ𝑡

Δ𝑥𝑖

(
𝐹𝑖+1/2 − 𝐹𝑖−1/2

)
, (5.3)

where 𝛼𝑖𝑤 = 𝛼, 𝛼𝑖𝑤+1 = 1 − 𝛼, and 𝛼𝑖≠𝑖𝑤 ,𝑖𝑤+1 = 1, and Δ𝑥𝑖𝑤 = 𝛼Δ𝑥, Δ𝑥𝑖𝑤+1 = (1 − 𝛼)Δ𝑥 and

Δ𝑥𝑖≠𝑖𝑤 ,𝑖𝑤+1 = Δ𝑥 according to Fig. 5.4.
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On the other hand, the ℎ-box update of the small cells and neighboring cells is given by:

𝑄𝑛+1
𝑖𝑤−1 = 𝛼𝑄̂𝑛+1

𝐿𝐿 + (1 − 𝛼)𝑄̂𝑛+1
𝐿 (5.4)

𝑄𝑛+1
𝑖𝑤

= 𝑄̂𝑛+1
𝐿 (5.5)

𝑄𝑛+1
𝑖𝑤+1 = 𝑄̂𝑛+1

𝑅 (5.6)

𝑄𝑛+1
𝑖𝑤+2 = (1 − 𝛼)𝑄̂𝑛+1

𝑅 + 𝛼𝑄̂𝑛+1
𝑅𝑅 (5.7)

𝑄𝑛+1
𝑖𝑤−2 = 𝛼𝑄

𝑛+1
𝑖𝑤−2 + (1 − 𝛼)𝑄̂𝑛+1

𝐿𝐿 (5.8)

𝑄𝑛+1
𝑖𝑤+3 = (1 − 𝛼)𝑄𝑛+1

𝑖𝑤+3 + 𝛼𝑄̂𝑛+1
𝑅𝑅 , (5.9)

where 𝑄
𝑛+1
𝑖 indicates the regular update of that cell. Given these updates, the updated mass at time

𝑡𝑛+1 of the surrounding cells is given by:

𝑖𝑤+4∑︁
𝑖=𝑖𝑤−3

𝛼𝑖𝑄
𝑛+1
𝑖 = 𝑄𝑛𝑖𝑤−3 −

Δ𝑡

Δ𝑥

(
𝐹𝑖𝑤−5/2 − 𝐹𝑖−7/2

)
+𝑄𝑛𝑖𝑤+4 −

Δ𝑡

Δ𝑥

(
𝐹𝑖𝑤+9/2 − 𝐹𝑖𝑤+7/2)

+ 𝛼
(
𝑄𝑛𝑖𝑤−2 −

Δ𝑡

Δ𝑥

(
𝐹𝑖𝑤−3/2 − 𝐹𝑖𝑤−5/2

) )
+ (1 − 𝛼)

(
𝑄𝑛𝑖𝑤+3 −

Δ𝑡

Δ𝑥

(
𝐹𝑖𝑤+7/2 − 𝐹𝑖𝑤+5/2

) )
+ 𝑄̂𝑛+1

𝐿𝐿 + 𝑄̂𝑛+1
𝐿 + 𝑄̂𝑛+1

𝑅 + 𝑄̂𝑛+1
𝑅𝑅

= 𝑄
𝑛+1
𝑖𝑤−3 +𝑄

𝑛+1
𝑖𝑤+4 + 𝛼𝑄

𝑛+1
𝑖𝑤−2 + (1 − 𝛼)𝑄𝑛+1

𝑖𝑤+3

+ 𝑄̂𝑛𝐿𝐿 −
Δ𝑡

Δ𝑥

(
𝐺−3/2 − 𝐺−5/2

)
+ 𝑄̂𝑛𝐿 −

Δ𝑡

Δ𝑥

(
𝐺−1/2 − 𝐺−3/2

)
+ 𝑄̂𝑛𝑅 −

Δ𝑡

Δ𝑥

(
𝐺1/2 − 𝐺−1/2

)
+ 𝑄̂𝑛𝑅𝑅 −

Δ𝑡

Δ𝑥

(
𝐺3/2 − 𝐺1/2

)
, (5.10)

where 𝐺𝑖−1/2 represents the flux between ℎ-boxes, as also seen in Fig. 5.4.

Now equating the two expressions in Eq. (5.3) and Eq. (5.10) gives us what 𝐺3/2 and 𝐺−5/2
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(a) Case I: Parallel barrier off
edge (b) Case II: diagonal barrier (c) Case III: 20◦ barrier

Figure 5.5: The three examples of the 2D barrier problem being studied.

should be:

𝐺3/2 = 𝛼𝐹𝑖𝑤+7/2 + (1 − 𝛼)𝐹𝑖𝑤+5/2

𝐺−5/2 = (1 − 𝛼)𝐹𝑖𝑤−5/2 + 𝛼𝐹𝑖𝑤−3/2. (5.11)

Since we use wave propagation algorithm in solving the SWE, we translate these fluxes in wave

form in the actual numerical solutions. We provide the 1D numerical results in section Section 5.4.

5.3 2D problem with the ℎ-box grid

We develop three ℎ-box type methods in the 2D case, none of which uses LTS or the many

sided ℎ-boxes of the original method. First we extend the double ℎ-box method to the case that

barrier’s orientation is parallel to grid. Second, we develop a single ℎ-box layer method in the case

that barrier is at 45◦ to the grid. Finally, we develop also a single ℎ-box layer method in the case

that barrier is at 20◦ to the grid, which can theoretically be extended to other angles (see Figs. 5.5a

to 5.5c for the setup). Note that these are instances of the first type of barrier problem as described

in Fig. 2.2a.
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5.3.1 2D Problem I: Parallel barrier

The simplest extension of the 1D problem to 2D is when we have a straight barrier that cuts

through either a row or column of cells as in Fig. 5.5a. The small cells are all in one row or column,

and the ratio of their areas to regular cell area are also 𝛼 and 1 − 𝛼, where 𝛼 is the proportion of

the smaller cut or equivalently, the distance from the nearest edge.

Because of the added dimension, now we need double ℎ-boxes off the barrier on every column

or row, creating a grid of ℎ-boxes. Without loss of generality, we will only consider a horizontal

barrier that cuts through a row of cells. Then we create a double ℎ-box grid as in Fig. 5.6. Note

that the figure shows a cut-out of a bigger domain, so the the ℎ-box grid can continue in the lateral

direction as long as the physical domain extends.

𝑄̂𝑖,-1

𝑄̂𝑖,-2

𝑄̂𝑖,1

𝑄̂:,2

𝐺̂𝑖,−5/2

𝐺̂𝑖,5/2

𝑗 = 𝑖𝑤 + 1

𝑗 = 𝑖𝑤

Figure 5.6: Double ℎ-box grid for grid aligned barrier problem. Each 𝛾-row of ℎ-boxes are denoted
by 𝑄̂𝑖,𝛾. The 𝑗 th index of the small cells are 𝑖𝑤 and 𝑖𝑤 + 1.

Before we discuss how to update these ℎ-boxes, we first remark the difference between this

proposed method and the original ℎ-box method. If the same principles of the original 2D ℎ-box

method were to be applied to our problem, we would have to calculate ℎ-boxes off every small cell

edge.

In our problem, however, this includes calculating the value of an ℎ-box that lies on top of

the barrier, namely the ℎ-box off edge 𝑦 = 𝑦𝑖𝑤−1/2 that coincides with the sliced cell (shaded in

Fig. 5.6). The value for this crossed over ℎ-box is ambiguous, so our method bypasses the need to

set a crossed over value on such ℎ-box and is also the reason why the double ℎ-box method was
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developed for our model problem. To compensate for this absence of ℎ-box calculation and loss of

flux at an edge, we add the second ℎ-box. As we will see, however, in the angled barrier case, we

cannot use the two full ℎ-box layers as the conservation calculations quickly get complicated.

The ℎ-box values in this grid method are calculated as they were in the 1D case, by weighting

the covered cells by volume. We number the ℎ-box rows underneath the barrier with 𝛾 = -1, -2,

and the ones above the barrier with 𝛾 = 1, 2. Then we have:

𝑄̂𝑖,−2 = 𝛼𝑄𝑖,𝑖𝑤−2 + (1 − 𝛼)𝑄𝑖,𝑖𝑤−1

𝑄̂𝑖,−1 = 𝛼𝑄𝑖,𝑖𝑤−1 + (1 − 𝛼)𝑄𝑖,𝑖𝑤

𝑄̂𝑖,1 = 𝛼𝑄𝑖,𝑖𝑤+1 + (1 − 𝛼)𝑄𝑖,𝑖𝑤+2

𝑄̂𝑖,2 = 𝛼𝑄𝑖,𝑖𝑤+2 + (1 − 𝛼)𝑄𝑖,𝑖𝑤+3. (5.12)

Once the values are set at time 𝑡𝑛, WR is used between ℎ-boxes 𝑄̂𝑖,−1 and 𝑄̂𝑖,1 for each column

𝑖. Then standard RPs are solved between the ℎ-boxes 𝑄̂𝑖,−2 and 𝑄̂𝑖,−1, and between 𝑄̂𝑖,1 and 𝑄̂𝑖,2

for each column 𝑖. Finally, the same formula as in the 1D double ℎ-box method is used to set the

fluctuation at the outermost edges.

Let 𝐺̂𝑖,5/2 denote the fluxes at the top edge of ℎ-boxes 𝑄̂𝑖,2, and let 𝐺̂𝑖,−5/2 denote the fluxes at

the bottom edge of ℎ-boxes 𝑄̂𝑖,−2. Also, let 𝐺𝑖, 𝑗−1/2 denote the flux in 𝑦-direction at the bottom

edge of grid cell 𝐶𝑖, 𝑗 . Then we have:

𝐺̂𝑖,5/2 = 𝛼𝐺𝑖,𝑖𝑤+7/2 + (1 − 𝛼)𝐺𝑖,𝑖𝑤+5/2

𝐺̂𝑖,−5/2 = (1 − 𝛼)𝐺𝑖,𝑖𝑤−5/2 + 𝛼𝐺𝑖,𝑖𝑤−3/2. (5.13)

As for the flux in the 𝑥 (transverse) direction 𝐹̂𝑖±1/2,𝛾 between the ℎ-boxes, we resort to the

appropriately scaled flux that arises from the small cells, instead of computing them out of the

ℎ-box cells. This is because in the transverse direction, small cells cause no stability problems in

this special case since flow is in the 𝑥-direction where the cell width is always Δ𝑥 as also discussed
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in [38]. In equation form, we have that for each ℎ-box cell 𝑖 in row 𝛾 = −2,−1, 1, 2:

𝑄̂𝑛+1
𝑖,𝛾 = 𝑄̂𝑛𝑖,𝛾 −

Δ𝑡

Δ𝑥

(
𝐹̂𝑖+1/2,𝛾 − 𝐹̂𝑖−1/2,𝛾

)
− Δ𝑡

Δ𝑦

(
𝐺̂𝑖,𝛾+1/2 − 𝐺̂𝑖,𝛾−1/2

)
, (5.14)

where

𝐹̂𝑖+1/2,−1 = (1 − 𝛼)𝐹𝑖+1/2,𝑖𝑤 + 𝛼𝐹𝑖+1/2,𝑖𝑤−1

𝐹̂𝑖+1/2,−2 = (1 − 𝛼)𝐹𝑖+1/2,𝑖𝑤−1 + 𝛼𝐹𝑖+1/2,𝑖𝑤−2

𝐹̂𝑖+1/2,1 = 𝛼𝐹𝑖+1/2,𝑖𝑤+1 + (1 − 𝛼)𝐹𝑖+1/2,𝑖𝑤+2

𝐹̂𝑖+1/2,2 = 𝛼𝐹𝑖+1/2,𝑖𝑤+2 + (1 − 𝛼)𝐹𝑖+1/2,𝑖𝑤+3. (5.15)

Once the ℎ-box cells are updated, the small cells update are by volume and as follows:

𝑄𝑛+1
𝑖,𝑖𝑤

= 𝑄̂𝑖,−1

𝑄𝑛+1
𝑖,𝑖𝑤+1 = 𝑄̂𝑖,1

𝑄𝑛+1
𝑖,𝑖𝑤−1 = 𝛼𝑄̂𝑖,−1 + (1 − 𝛼)𝑄̂𝑖,−2

𝑄𝑛+1
𝑖,𝑖𝑤+2 = (1 − 𝛼)𝑄̂𝑖,1 + 𝛼𝑄̂𝑖,2

𝑄𝑛+1
𝑖,𝑖𝑤−2 = (1 − 𝛼)𝑄𝑛+1

𝑖,𝑖𝑤−2 + 𝛼𝑄̂𝑖,−2

𝑄𝑛+1
𝑖,𝑖𝑤+3 = (1 − 𝛼)𝑄̂𝑖,2 + 𝛼𝑄

𝑛+1
𝑖,𝑖𝑤+3, (5.16)

where 𝑄
𝑛+1
𝑖, 𝑗 represents the standard regular update, i.e.

𝑄
𝑛+1
𝑖, 𝑗 = 𝑄𝑛𝑖, 𝑗 −

Δ𝑡

Δ𝑥

(
𝐹𝑖+1/2, 𝑗 − 𝐹𝑖−1/2, 𝑗

)
− Δ𝑡

Δ𝑦

(
𝐺𝑖, 𝑗+1/2 − 𝐺𝑖, 𝑗−1/2

)
. (5.17)

When Δ𝑥 = Δ𝑦, we can also simplify the notation for the regular update as:

𝑄
𝑛+1
𝑖, 𝑗 = 𝑄𝑛𝑖, 𝑗 − 𝑘Δ𝑄𝑛+1

𝑖, 𝑗 ,
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where 𝑘 = Δ𝑡
Δ𝑥

and Δ𝑄𝑛+1
𝑖, 𝑗

= (𝐹𝑖+1/2, 𝑗 − 𝐹𝑖−1/2, 𝑗 ) + (𝐺𝑖, 𝑗+1/2 − 𝐺𝑖, 𝑗−1/2) to isolate the mass change

from time step 𝑛 to 𝑛 + 1. We will use this notation in the next section. We also remark that in

the actual implementation, the normal fluctuations and the transverse fluctuations are calculated

separately, in a dimensional split way akin to work in [39].

5.3.2 2D Problem II: Diagonal barrier

The second case we study is the barrier that is at 45◦ to the grid (Fig. 5.5b). In this case the

small cells all have half the size of regular cells and occur along the diagonal of the grid. Although

this example is the simplest of the angled barrier problem, some new complexities arise.

Rotation of states

First, the obvious complexity is the need to rotate the states with respect to the barrier to

calculate the flux between the two small cells on either side of the barrier. The water momentum

ℎ𝑢, ℎ𝑣 are given in the Cartesian coordinate directions. To rotate these in directions 𝑛̂, 𝑛̂⊥, we can

apply the rotation matrix 𝑅𝑛̂ shown below. Let 𝑄𝑖, 𝑗 be the Cartesian coordinate aligned state. Then

we have for the rotated state 𝑄̆𝑖, 𝑗 [10]:

𝑄̆𝑖, 𝑗 =


1 0 0

0 𝑛̂𝑥 𝑛̂𝑦

0 −𝑛̂𝑦 𝑛̂𝑥


𝑄𝑖, 𝑗 . (5.18)

To rotate back to the Cartesian coordinate, we apply the inverse:

𝑄𝑖, 𝑗 =


1 0 0

0 𝑛̂𝑥 −𝑛̂𝑦

0 𝑛̂𝑦 𝑛̂𝑥


𝑄̆𝑖, 𝑗 . (5.19)

Now to determine these rotated grid directions 𝑛̂, 𝑛̂⊥, we choose the unit normal vector to

the diagonal barrier, 𝑛̂ = (± 1√
2
,∓ 1√

2
) and its orthogonal 𝑛̂⊥ = (∓ 1√

2
,± 1√

2
). The reason for the
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alternating signs is that the rotated grid directions must correspond to the water’s interaction with

the barrier. In the case that water bounces off the barrier and does not overtop, the normal direction

vector to the barrier must point in the direction of the reflection. In the case that water overtops the

barrier, the normal direction vector must point towards the direction of the overtopping, while the

corresponding transverse vector also switches sign. In Fig. 5.7, we show the normal and transverse

reflected wave

(a) No overtopping case

overtopping wave

(b) Overtopping case

Figure 5.7: Determining the direction vectors of rotation.

direction vectors used in rotating the lower half cell, assuming the water moves from right-bottom

to left-top and either reflects (a) or overtops (b), as the blue dotted line indicates.

Motivation for monolayer ℎ-box grid setup

Since these direction vectors will be used to rotate the ℎ-boxes covering the small cells, we

now discuss how the ℎ-box grid is set up. In the previous case, constructing the ℎ-box grid and

determining the fluctuations at the outer edges of the ℎ-boxes were straightforward extensions of

the 1D case. If we apply the same double ℎ-boxes grid to this diagonal barrier, however, the con-

servation calculation required to determine the outer edge fluxes (c.f. Eq. (5.11) for 1D) becomes

much more complicated, which is another added complexity in the angled case. However, if we

only form one layer of ℎ-boxes on either side of the barrier, the calculation is more manageable

with the method still producing reasonable results. We first draw the monolayer grid in Fig. 5.8,

and show the calculations.

In Fig. 5.8, we consider a grid with only two cells in both the 𝑥 direction and 𝑦 direction,

with two ghost cells all around, to also show what must be done at the boundary. Note that the

barrier only extends to first ghost cell outside the inner domain, since otherwise the ℎ-boxes will
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𝑖

𝑗

𝑄̂𝐿
0

𝑄̂𝐿
1

𝑄̂𝐿
2

𝑄̂𝐿
3

𝑄̂𝑅
0

𝑄̂𝑅
1

𝑄̂𝑅
2

𝑄̂𝑅
3

Figure 5.8: Monolayer of ℎ-boxes for diagonal barrier problem. Example with a small grid (2× 2)
setup, with the outer layer being ghost cells of thickness 2.

lie outside the whole domain if the barrier were to extend all the way to the second layer of ghost

cells. As can be seen in the diagram, the proportion of cells that comprise the ℎ-boxes are not

as simple as in case I, and now additional geometrical calculations are required. However, in this

diagonal case, there is a repeated pattern for each ℎ-box and the area proportion of each cell can

be easily calculated (see Fig. 5.9). This gives us:

𝑄̂𝑖,𝑖 =
1

√
2Δ𝑥Δ𝑦

(
𝑎1𝑄𝑖,𝑖 + 2𝑎2𝑄𝑖+1,𝑖 + 𝑎3𝑄𝑖+1,𝑖−1

)
. (5.20)

𝑎1 𝑎2

𝑎2
𝑎3

Figure 5.9: Area weights of cells that make up each ℎ-box: {𝑎1 = 1
2 , 𝑎3 = (1−

√
2

2 )2, 𝑎2 =

√
2−𝑎1−𝑎3

2 }.
Note that the area of the ℎ-box is

√
2Δ𝑥Δ𝑦, and the weights will be effectively normalized by

√
2.
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Fluctuation calculations

Once these ℎ-box cells are rotated according to Eq. (5.18), two sets of fluctuations calculations

are performed, namely the WR at the barrier between the ℎ-boxes on either side of the barrier,

(𝑄̂𝐿
𝑖

and 𝑄̂𝑅
𝑖

) and the transverse fluctuation calculations in between the ℎ-boxes on one side of the

barrier (𝑄̂𝑀
𝑖−1 and 𝑄̂𝑀

𝑖
, where 𝑀 = 𝐿 or 𝑅). Since SWE is rotationally invariant, the fluctuation

calculations between rotated states are exactly the same as that between two grid-aligned states.

After the ℎ-box cells are updated according to the fluctuations, they are rotated back into the

Cartesian coordinate grid for the small cells and neighboring cells’ final update.

Outer fluxes

To update the ℎ-boxes completely, we must identify the outer fluxes as well. In order to cal-

culate the outer fluxes, we perform a similar conservation calculation as in the 1D case to balance

mass between the update according to the monolayer ℎ-box method and that according to the stan-

dard flux difference method.

In the standard flux difference method, Eq. (5.17) is used for regular sized cells. For the half-

size small cells 𝑄𝐿/𝑅
𝑖,𝑖

along the diagonal, there is an extra barrier flux 𝐻𝑖,𝑖, and so the following

update is used:

𝑄
𝑅,𝑛+1
𝑖,𝑖

= 𝑄
𝑅,𝑛
𝑖,𝑖

− Δ𝑡

0.5Δ𝑥
𝐹𝑖+1/2,𝑖 +

Δ𝑡

0.5Δ𝑦
𝐺𝑖,𝑖−1/2 −

Δ𝑡
√

2
0.5Δ𝑦

𝐻𝑖,𝑖

𝑄
𝐿,𝑛+1
𝑖,𝑖

= 𝑄
𝐿,𝑛
𝑖,𝑖

+ Δ𝑡

0.5Δ𝑥
𝐹𝑖−1/2,𝑖 −

Δ𝑡

0.5Δ𝑦
𝐺𝑖,𝑖+1/2 +

Δ𝑡
√

2
0.5Δ𝑦

𝐻𝑖,𝑖 . (5.21)

The
√

2 factor comes in because of the length of the barrier segment in each cut cell [40].

In the monolayer ℎ-box method, we can generalize from Fig. 5.8 and have the following up-
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dates:

𝑄
𝑅,𝑛+1
𝑖,𝑖

= 𝑄̂
𝑅,𝑛+1
𝑖

𝑄
𝐿,𝑛+1
𝑖,𝑖

= 𝑄̂
𝐿,𝑛+1
𝑖

, (5.22)

and for cells at the either tip of the barrier,

𝑄𝑛+1
0,−1 = 𝑎2𝑄̂

𝑅,𝑛+1
0 + (1 − 𝑎2)𝑄

𝑛+1
0,−1

𝑄𝑛+1
𝑁𝑥+2,𝑁𝑦+1 = 𝑎2𝑄̂

𝑅,𝑛+1
𝑁𝑥+1 + (1 − 𝑎2)𝑄

𝑛+1
𝑁𝑥+2,𝑁𝑦+1

𝑄𝑛+1
−1,0 = 𝑎2𝑄̂

𝐿,𝑛+1
0 + (1 − 𝑎2)𝑄

𝑛+1
−1,0

𝑄𝑛+1
𝑁𝑥+1,𝑁𝑦+2 = 𝑎2𝑄̂

𝐿,𝑛+1
𝑁𝑥+1 + (1 − 𝑎2)𝑄

𝑛+1
𝑁𝑥+1,𝑁𝑦+2, (5.23)

and for cells simultaneously covered by two adjacent ℎ-boxes (𝑖 = 1, 𝑁𝑥),

𝑄𝑛+1
𝑖+1,𝑖 = 𝑎2𝑄̂

𝑅,𝑛+1
𝑖

+ 𝑎2𝑄̂
𝑅,𝑛+1
𝑖+1 + (1 − 2𝑎2)𝑄

𝑛+1
𝑖+1,𝑖

𝑄𝑛+1
𝑖−1,𝑖 = 𝑎2𝑄̂

𝐿,𝑛+1
𝑖

+ 𝑎2𝑄̂
𝐿,𝑛+1
𝑖+1 + (1 − 2𝑎2)𝑄

𝑛+1
𝑖−1,𝑖, (5.24)

and finally for the cells diagonally across to the small cells:

𝑄𝑛+1
𝑖+1,𝑖−1 = 𝑎3𝑄̂

𝑅,𝑛+1
𝑖

+ (1 − 𝑎3)𝑄
𝑛+1
𝑖+1,𝑖−1

𝑄𝑛+1
𝑖−1,𝑖+1 = 𝑎3𝑄̂

𝐿,𝑛+1
𝑖

+ (1 − 𝑎3)𝑄
𝑛+1
𝑖−1,𝑖+1 . (5.25)
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The update for the ℎ-box cells looks like:

𝑄̂
𝑅,𝑛+1
𝑖

=
1
√

2
(
𝑎1𝑄

𝑅,𝑛
𝑖,𝑖

+ 𝑎2(𝑄𝑛𝑖+1,𝑖 +𝑄
𝑛
𝑖,𝑖−1) + 𝑎3𝑄

𝑛
𝑖+1,𝑖−1

)
− Δ𝑡

Δ𝑥
(𝐹̂𝑖,1/2 − 𝐹̂𝑖,−1/2) −

Δ𝑡
√

2Δ𝑥
(𝐺̂𝑅

𝑖+1/2 − 𝐺̂
𝑅
𝑖−1/2)

𝑄̂
𝐿,𝑛+1
𝑖

=
1
√

2
(
𝑎1𝑄

𝐿,𝑛
𝑖,𝑖

+ 𝑎2(𝑄𝑛𝑖,𝑖+1 +𝑄
𝑛
𝑖−1,𝑖) + 𝑎3𝑄

𝑛
𝑖−1,𝑖+1

)
− Δ𝑡

Δ𝑥
(𝐹̂𝑖,−1/2 − 𝐹̂𝑖,−3/2) −

Δ𝑡
√

2Δ𝑥
(𝐺̂𝐿

𝑖+1/2 − 𝐺̂
𝐿
𝑖−1/2), (5.26)

where 𝐺̂𝐿/𝑅
𝑖−1/2 denotes the (grid oriented) transverse fluxes in between ℎ-box cells 𝑖 and 𝑖 − 1 either

above (𝐿) or below (𝑅) barrier and 𝐹̂𝑖,−1/2, 𝐹̂𝑖,−3/2 and 𝐹̂𝑖,1/2 denote the normal fluxes at: the barrier,

the outer left flux, and the outer right flux, respectively (see Fig. 5.10), for ℎ-box 𝑖. Note that these

fluxes are grid oriented for purposes of conservation calculations.

Now we select a neighborhood around the small cells to sum up the updated mass to compare

it between the two methods. To do so, we select the cells whose updates are affected by the ℎ-box

updates, which is again large enough range to consider given the CFL condition. We look at the

mass on each side of the barrier at a time:

𝑀𝑛+1
𝐿 =

𝑁𝑥+1∑︁
𝑖=0

(
0.5𝑄𝐿,𝑛+1

𝑖,𝑖
+𝑄𝑛+1

𝑖−1,𝑖 +𝑄
𝑛+1
𝑖,𝑖+1 +𝑄

𝑛+1
𝑖−1,𝑖+1

)
𝑀𝑛+1
𝑅 =

𝑁𝑥+1∑︁
𝑖=0

(
0.5𝑄𝑅,𝑛+1

𝑖,𝑖
+𝑄𝑛+1

𝑖+1,𝑖 +𝑄
𝑛+1
𝑖,𝑖−1 +𝑄

𝑛+1
𝑖+1,𝑖−1

)
, (5.27)

where the 0.5 is coming from the volume of the cut cell.

For regular flux difference method, we apply Eqs. (5.17) and (5.21) in the mass formula and

we apply Eqs. (5.22) and (5.25) for the ℎ-box method. Setting 𝑀𝑛+1
𝑅,regular + 𝑀

𝑛+1
𝐿,regular = 𝑀𝑛+1

𝑅,ℎ-box +

𝑀𝑛+1
𝐿,ℎ-box cancels out like terms and leaves only the following:

0.5
(
-
𝑁𝑥+1∑︁
𝑖=0

(
𝐹̂𝑖,1/2 − 𝐹̂𝑖,−3/2

)
+ 1
√

2
𝐺̂𝐿

−1/2 −
1
√

2
𝐺̂𝐿
𝑁𝑥+1/2 +

1
√

2
𝐺̂𝑅

−1/2 −
1
√

2
𝐺̂𝑅
𝑁𝑥+1/2

)
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𝐹̂0,−3/2

𝐹̂1,−3/2

𝐹̂2,−3/2

𝐹̂3,−3/2

𝐹̂0,1/2

𝐹̂1,1/2

𝐹̂2,1/2

𝐹̂3,1/2

𝐹̂0,-1/2

𝐹̂1,-1/2

𝐹̂0,-1/2

𝐹̂3,-1/2

(a) Normal fluxes.

𝐺̂𝑅
−1/2

𝐺̂𝑅
1/2

𝐺̂𝑅
3/2

𝐺̂𝑅
5/2

𝐺̂𝑅
7/2

𝐺̂𝐿
−1/2

𝐺̂𝐿
1/2

𝐺̂𝐿
3/2

𝐺̂𝐿
5/2

𝐺̂𝐿
7/2

(b) Transverse fluxes.

Figure 5.10: Notations of fluxes on ℎ-box edges.

= 𝑎2(Δ𝑄𝑛+1
0,−1 + Δ𝑄𝑛+1

𝑁𝑥+2,𝑁𝑦+1) + 𝑎2(Δ𝑄𝑛+1
−1,0 + Δ𝑄𝑛+1

𝑁𝑥+1,𝑁𝑦+2)

+𝑎3

𝑁𝑥+1∑︁
𝑖=0

(
Δ𝑄𝑛+1

𝑖−1,𝑖+1 + Δ𝑄𝑛+1
𝑖+1,𝑖−1

)
+ 2𝑎2

(𝑁𝑥+1∑︁
𝑖=1

Δ𝑄𝑛+1
𝑖−1,𝑖 +

𝑁𝑥∑︁
𝑖=0

Δ𝑄𝑛+1
𝑖+1,𝑖

)
. (5.28)

That is, all fluxes except the outer fluxes of ℎ-box edges cancel (left hand side of Eq. (5.28)) and

the fluxes of cells affected by the ℎ-box cells remain in proportion to how much area it overlaps

with the ℎ-box (right hand side of Eq. (5.28)).

Given this condition for conservation Eq. (5.28), we can assign each of the ℎ-box outer fluxes

to a combination of the remaining fluxes on the right hand side. We group the remaining fluxes by

their vicinity to the ℎ-box outer edge whose flux we desire to set. Specifically, we set:

𝐹̂𝑖,1/2 = -2
(
𝑎2Δ𝑄

𝑛+1
𝑖+1,𝑖 + 𝑎2Δ𝑄

𝑛+1
𝑖,𝑖−1 + 𝑎3Δ𝑄

𝑛+1
𝑖+1,𝑖−1

)
for 𝑖 = 1, 𝑁𝑥

𝐹̂𝑖,−3/2 = 2
(
𝑎2Δ𝑄

𝑛+1
𝑖−1,𝑖 + 𝑎2Δ𝑄

𝑛+1
𝑖,𝑖+1 + 𝑎3Δ𝑄

𝑛+1
𝑖−1,𝑖+1

)
for 𝑖 = 1, 𝑁𝑥 (5.29)

for the normal outer fluxes in the interior ℎ-boxes, and for normal and transverse fluxes at either
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end of ℎ-box monolayer, we set:

𝐹̂0,1/2 = -2𝑎2Δ𝑄
𝑛+1
1,0

𝐹̂0,−3/2 = 2𝑎2Δ𝑄
𝑛+1
0,1

𝐹̂𝑁𝑥+1,1/2 = -2𝑎2Δ𝑄
𝑛+1
𝑁𝑥+1,𝑁𝑥

𝐹̂𝑁𝑥+1,−3/2 = 2𝑎2Δ𝑄
𝑛+1
𝑁𝑥 ,𝑁𝑥+1

𝐺̂𝑅
−1/2 = 2

√
2(𝑎2Δ𝑄

𝑛+1
0,−1 + 𝑎3Δ𝑄

𝑛+1
1,−1)

𝐺̂𝑅
𝑁𝑥+1/2 = 2

√
2(𝑎2Δ𝑄𝑁𝑥+2,𝑁𝑥+1 + 𝑎3Δ𝑄

𝑛+1
𝑁𝑥+2,𝑁𝑥

)

𝐺̂𝐿
−1/2 = 2

√
2(𝑎2Δ𝑄−1,0 + 𝑎3Δ𝑄−1,1)

𝐺̂𝐿
𝑁𝑥+1/2 = 2

√
2(𝑎2Δ𝑄𝑁𝑥+1,𝑁𝑥+2 + 𝑎3Δ𝑄

𝑛+1
𝑁𝑥 ,𝑁𝑥+2). (5.30)

Note that the remaining fluxes are set using cells’ incremental updates Δ𝑄𝑖, 𝑗 . With these the ℎ-

boxes are then updated according to Eq. (5.26) and rotated back into the original grid.

5.3.3 2D Problem III: General angled barrier

In this section we carry the same monolayer and conservation idea to the general case of having

an arbitrarily angled barrier as in Fig. 5.11. We create normal ℎ-boxes off the barrier and perform

wave redistribution at the barrier edge, updating the ℎ-boxes and underlying cells.

Figure 5.11: Case of arbitrary angled barrier. Note both the fragments within each ℎ-box and the
widths of each ℎ-box, how they all differ across ℎ-boxes. The update formula for highlighted cell
will require updated averages of three ℎ-boxes.
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The added complexities are twofold. First, the update formula for the underlying cells become

more complicated as multiple ℎ-boxes can cover a small cell (see highlighted cell in Fig. 5.11).

Also, they can either fully or partially cover the small cell. This means that in some cases, the

ℎ-box averages will update the small cells completely, and in other cases, the original cell regular

updates will also contribute partially to the update values of the small cells. As can be observed in

Fig. 5.11, however, the small cells that will be only partially covered will be those that have area

larger than 0.5Δ𝑥Δ𝑦 for which regular updates are not unstable or CFL-violating.

Updates

Let 𝑄𝑛+1
𝑠 denote the updated average of a small cell fully covered by ℎ-box(es) {𝑄̂𝑖}, whose

index(es) (numbered from leftmost ℎ-box to the right) is in a set denoted by {𝑖𝑠}. Let 𝛼𝑖 denote the

areas of the ℎ-boxes that cover the small cell 𝑠. Then we have:

𝑄𝑛+1
𝑠 =

∑︁
𝑖∈𝑖𝑠

𝛼𝑖𝑄̂
𝑛+1
𝑖 . (5.31)

Now let 𝑄𝑛+1
𝑝𝑠

denote the updated average of a small cell partially covered by ℎ-box(es) {𝑄̂𝑖},

whose index(es) are again denoted by {𝑖𝑠}. Let 𝛼𝑖 denote the areas of the ℎ-boxes that cover the

small cell 𝑝𝑠. Also, let 𝐴𝑝𝑠 be the area of the small cell 𝑝𝑠. If 𝑄̂𝑛+1
𝑝𝑠

is the regular update of the cell,

then we have:

𝑄𝑛+1
𝑝𝑠

= (𝐴𝑝𝑠 −
∑︁
𝑖∈𝑖𝑠

𝛼𝑖)𝑄̂𝑛+1
𝑝𝑠

+
∑︁
𝑖∈𝑖𝑠

𝛼𝑖𝑄̂
𝑛+1
𝑖 . (5.32)

Computationally, we do this multiple ℎ-box update by first isolating each cell affected by ℎ-

boxes, finding which ℎ-box covers it, and updating it by the area-weighted new ℎ-box averages and

the regular averages if necessary (for the partially covered cells). The isolation of which ℎ-boxes

contribute to which cells are part of a pre-processed geometrical computation, whose data is then

retrieved on the run of the simulation.
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Conservative Calculations

Second, the conservation calculation needs to be applied cell by cell. The correction terms

required to conserve mass is applied to the ℎ-box values after updating them using fluctuations

and is the same as in the diagonal barrier case in Section 5.3.2, where we take the regular update

increment Δ𝑄𝑛+1
𝑝𝑠

of each cell partially covered by ℎ-boxes and weight them by 𝛼𝑖 and distribute as

out-fluxes of the 𝑖th ℎ-box to balance the mass equation, 𝑀𝑛+1
𝑅,regular+𝑀

𝑛+1
𝐿,regular = 𝑀

𝑛+1
𝑅,ℎ-box+𝑀

𝑛+1
𝐿,ℎ-box

(see Fig. 5.12a). The coefficients in front of the increments Δ𝑄𝑖, 𝑗 (e.g.
√

2, 0.5) were coming from

the small cell areas and barrier segment lengths, and for sake of notation, we include the weights

together with Δ𝑄𝑖, 𝑗 to define overall effective flux F . For example, in Eq. (5.28), we can define

F𝑖 = 0.5𝐹̂𝑖,1/2.

In equation form, let F 𝑖
𝑜 denote the total effective out-flux that needs to be determined for the

𝑖th ℎ-box to conserve mass. We call this total, since we combine both 𝑥-flux 𝐹 and 𝑦-flux 𝐺 and

define as F 𝑖
𝑜 as in the diagonal example. Also, let 𝑝𝑠 denote all the cells that contribute to the 𝑖th

ℎ-box, with 𝛼𝑖 denoting the area that cell 𝑝𝑠 contributes to the 𝑖th ℎ-box. Then we have:

F 𝑖
𝑜 = −

∑︁
𝑝𝑠

𝛼𝑖Δ𝑄
𝑛+1
𝑝𝑠
. (5.33)

This is the corrective term to each updated ℎ-box average.

5.3.4 Limitation of the monolayer slanted method

As seen in Fig. 5.12b, we cannot take regular time step updates when doing transversal com-

putation because of the irregular ℎ-box widths. We attempted to apply state redistribution (another

small cell method explained in the following chapter) in the transverse direction, but the result was

that this only works for reflection only problems and not for overtopping problems. Applying yet

another ℎ-box method in the transverse direction here will be too complicated.

We are not certain why this is the case, but we can suspect that in the reflection only case,

the most important wave direction is the normal to barrier direction. However, in the overtopping
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𝑖 𝑖 + 1

𝑗

(a) In the first leftmost lower ℎ-box, the to-
tal effective outer flux will be the area of blue
region times Δ𝑄𝑛+1

𝑖, 𝑗
, and that of the second

lower ℎ-box will be the area of red region
times Δ𝑄𝑛+1

𝑖, 𝑗
plus the area of yellow region

times Δ𝑄𝑛+1
𝑖+1, 𝑗 . This term is then used to pre-

serve mass.

(b) Small cell problems within the ℎ-box layer
in the transverse direction. Standard updates
using transverse fluctuations computed be-
tween the ℎ-box cells will violate CFL condi-
tion. State redistribution (described in Chap-
ter 6) was unsuccessfully used to get around
this.

Figure 5.12: Computational considerations for ℎ-box method in general angle

case, the wave motion depends also heavily in the transverse direction along the barrier, which a

simple fix with SRD does not suffice. Furthermore, with a monolayer of ℎ-boxes, we no longer

have an approximation of the wave at the cut cell edges that will hit the barrier edge (as explained

in the 1D double ℎ-box method). In Section 5.4.5, we will show an example of using this WR and

state redistribution hybrid method on a complete blockage problem at 20◦ to the 𝑥-axis and also its

convergence to numerical solution computed via mapped grid.

5.4 Model problems

5.4.1 1D computational results

We provide here a 1D example simulating a barrier on a sloping beach with dry state condition

on the right side of the barrier to test inundation. The boundary conditions on either end of the

domain are wall boundary conditions, to also test conservation. We observe conservation of mass

to machine precision. The number of cells is 𝑁 = 400, with 𝛼 = 0.1. The CFL was 1. The barrier

height is ℓ = 0.35. The initial condition is shown in Fig. 5.13.
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Figure 5.13: Initial condition of sloping beach example, with 𝑁 = 400, 𝛼 = 0.1, ℓ = 0.35.

In the water depth plot, the green vertical line at the center represents the flux-allowed embed-

ded boundary, or the zero-width barrier, and the sloping line on the bottom represents the sloping

bathymetry. The water is on the left of the barrier, and we have a dam-break that initiates the

wave. The figure on the bottom shows the initial momentum of the water, which is zero. The two

solutions are plotted on top of each other, with the solid blue and black line representing the ℎ-box

solution, and the dotted red line representing the LTS solution.

(a) 𝐻-box solution in black and blue solid line
and LTS solution in red dotted line. Overtopping
and inundation are both captured here.

(b) 𝐻-box solution in black solid line and LTS in
red dotted line. Wave has overtopped and bounced off
the right boundary.

Figure 5.14: 1D Overtopping on sloping beach

In Fig. 5.14a, we present the overtopping action and inundation. We note that since the equa-

tions are 1D SWE, there is no vertical motion in the 𝑦 direction simulating the water’s flowing
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down the barrier. Instead there is only lateral motion in the 𝑥 direction once water overtops the

barrier. In Fig. 5.14b, we present the simulation at time 𝑡 = 0.42. Here at time 𝑡 = 0.42, the wave

initiated by the dam break has overtopped the barrier and reflects off the right endpoint. The LTS

solution and the ℎ-box method solution to problem in Fig. 5.13 line up closely, while the ℎ-box

method requires no tracking of waves.

5.4.2 2D Case I: Horizontal barrier

Here we present a 100× 100 grid from [0, 0] to [1, 1] with water height ℎ = 1.0 all round with

the exception of a square shaped step of positive 1.5 in the left lower corner. CFL was 1 here as

well. There is no initial momentum. This is to produce a dam-break like wave at an oblique angle

to the barrier, to highlight the method’s adaptability to two dimensions. The height of the barrier

is 1.5 and the barrier is located just above the midpoint of the 𝑦-axis, 𝑦𝑏𝑎𝑟 = 0.502 (𝛼 = 0.2). We

will see that this is an overtopping example. The boundary conditions are extrapolation conditions

all around.

For comparison we provide the results of the same height and momentum initial conditions

with the barrier of same height on a grid edge, 𝑦𝑏𝑎𝑟 = 0.5. The numerical solution is computed

using only WR in 𝑦-direction exactly at a grid edge 𝑦 = 0.5 (𝛼 = 0.0). This is when the ℎ-boxes

are precisely the regular sized cells on either side of the barrier and only changes the 𝑦-flux at the

edge where the barrier lies. We compare our results with this example because other than the 0.02

distance difference in the location of the barrier, all else remain the same, and results should be

comparable.

For clarity and better comparison, we plot the contours of the water height normalized to 0.0

and the initial condition is shown in Fig. 5.15. The step in water height rescinds and propagates

a wave at an angle to the barrier and hits the barrier around time 𝑡 = 0.2. In Fig. 5.16, we see

the waves overtopping the barrier at time 𝑡 = 0.3. The two examples give very similar results, as

expected. We do not provide actual error, but show qualitative similarity. We show more detailed

error analysis for our slanted example later.
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Figure 5.15: Contour plot of initial condition of oblique wave example with parallel barrier: 𝑁 =

100, 𝛼 = 0.2, wall height ℓ = 1.5, and jump Δℎ = 1.5.

(a) 𝑦𝑏𝑎𝑟 = 0.5 at time 𝑡 = 0.3. (b) 𝑦𝑏𝑎𝑟 = 0.502 at time 𝑡 = 0.3.

Figure 5.16: Contour plot I of WR only result vs. ℎ-box method result for parallel barrier example

(a) 𝑦𝑏𝑎𝑟 = 0.5 at time 𝑡 = 0.6. (b) 𝑦𝑏𝑎𝑟 = 0.502 at time 𝑡 = 0.6.

Figure 5.17: Contour plot II of WR only result vs. ℎ-box method result for parallel barrier example

Not only is the overtopping captured but also the reflection from the barrier, as seen in the

𝑢-shaped contour below the barrier. The wave continues the overtop and reflect and partially exits

the domain at time 𝑡 = 0.6 in Fig. 5.17.
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5.4.3 2D Case II: Diagonal barrier

Here we present again the same grid with same dimension and number of cells, but now with

a diagonal barrier at 45◦. The height of the barrier is also the same, ℓ = 1.5, and the height of

water is ℎ = 1.0 all throughout, with the exception of a raise of 1.5 over a small square region

in the left-upper corner (see Fig. 5.18a). CFL is 1. The boundary conditions are wall boundary

conditions on the left and top boundaries while the right and bottom boundaries are extrapolated

for visual clarity in the waves.

(a) Diagonal problem initial state. (b) Rotated equivalent for comparison.

Figure 5.18: Initial condition of the diagonal problem and its equivalent problem with horizontal
barrier.

For comparison we provide a “rotated" version of the same initial conditions, namely a hori-

zontal barrier problem that is located on the middle grid edge so we can only use WR and which

has a half-square shaped raise on the bottom center of the grid (see Fig. 5.18b). The half-square

(i.e. triangular) shape is used in comparison instead of full square as in the diagonal problem be-

cause of the shape of the overall grid and the fact that the upper half of the square step is the part

that actually generates the wave that hits the barrier. Also, note the domain is extended to 1.4 to

match the distance between the corner of the square step to the barrier (
√

2/2 ≈ 0.7 = 1.4/2).

We see in Fig. 5.26 (in subsection “Larger Figures" at the end of this chapter) the progress

of the propagating wave, which hits the barrier and overtops it in both instances around 𝑡 = 0.4.

Again, we see both reflection and overtopping captured in the contours on both problems. We also

provide the 1D slices at the center of the motion (across the line 𝑦 = −𝑥 for diagonal case and

across the line 𝑥 = 0.7 for rotated equivalent) and compare them in Fig. 5.27 (in appendix). As one

55



can see especially from the 1D slices, the two results are virtually identical, as expected.

For a closer comparison between the two examples, we put “gauges" at special locations, which

are time profiles of the height at fixed points. This is akin to the comparison made in [41], where

they test the results of parabolic bowl tsunami. We can put gauges at points that are located

proportionally to the barrier in each example (Fig. 5.19) and compare the heights at each time.

We compare the parallel barrier (rotationally equivalent) problem results with the diagonal barrier

results. Furthermore, we compare these two against results from GEOCLAW , a shallow water

simulator with many available parametrizations [41], where the problem has a diagonal barrier

with cell-wide thickness.

In Fig. 5.20, we provide the gauge heights’ time profile and observe close results. Note that

the GEOCLAW comparison problem has thickness on the barrier and can have water on top of the

barrier, whereas our model problem does not. This explains the discrepancy in gauge 4, where

the GEOCLAW result seems to have less height during 𝑡 = 0.5 to 𝑡 = 0.6 than the parallel and

diagonal barrier results in black and dotted red. Some of the missing water is on the barrier in the

GEOCLAW result, whereas all the overtopping water is on the other side of the barrier in the model

problems. Also note that gauge 6 is flat throughout as the wave has not reached it by 𝑡 = 0.6. This

shows that the speed of the two results are consistent with each other. Furthermore, note the scale

of the second gauge result, that the difference between GEOCLAW , flat, and diagonal barrier is

𝑂 (Δ𝑥).

(a) The rotated example. (b) The rotated equivalent example.

Figure 5.19: Gauges for closer comparison.
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Figure 5.20: Gauge comparisons between the actually rotated problem and rotated equivalent prob-
lem.

5.4.4 2D Case III: Diagonal barrier with sloping beach

Here we provide an example similar to case II, except now with a sloping beach. The moti-

vation for this example is to mimic the real-life example of a wave rushing up against a barrier

on a beach. A note to be made is that in this example the local bathymetry near the barrier is flat

(two cells wide to both sides of barrier), as the conservation calculation made in Section 5.3.2 is

only for hyperbolic problems without a source term (e.g. bathymetric variation). To form an ℎ-box

monolayer method that is also conservative for varying bathymetry is a work in need of further

research.

We provide the results in Fig. 5.25 (in "Larger figures"). CFL is 1. The boundary conditions are

as same as before, with left and top boundaries being wall conditions and with right and bottom

boundaries are extrapolation conditions. The initial condition is a square step in the upper left

corner with jump size of 1.2, and the bathymetry is given by 𝑏(𝑥, 𝑦) = 0.01𝑥 − 0.01𝑦 − 2. The

barrier height is ℓ = 1.6. We present the surface height, normalized again at 0.0. Note how the

sloping beach causes the overtopping wave to become more skewed towards the right as it moves

closer to “shore". This is in accordance to the dependence of the waves’ speed on the height of

water, which decreases as the bathymetry slopes up, causing the accumulation to the right.
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5.4.5 Case IV: Arbitrary angled barrier with flat bathymetry

Finally we provide an example of an angled barrier that is 20◦ to the 𝑥-axis. This is to show

the method’s flexibility and ability to handle different barriers and very small cells. In the diagonal

barrier example, the small cells were at the border line of what is considered ‘small’, i.e. 0.5Δ𝑥Δ𝑦.

Here, we have small cells that are as small as 1.85E-05 Δ𝑥Δ𝑦. The grid is 100 × 100 cells from

[0, 0] to [1, 1]. CFL here due to the unsplit nature of the update (update with fluctuation in 𝑥 and

𝑦 direction simultaneously) was 0.5.

Complete blockage

We do a dam break problem with a planar wave that comes toward the barrier at an oblique

angle. The height of the barrier ℓ is set to be 5.0, and the overall height of water ℎ across the

domain is set to be 1.0. The jump of the dam is 0.5. The bathymetry 𝑏 is flat and set at −2.0.

Fig. 5.21 shows the initial setup and displays the water height ℎ. The boundary conditions are all

wall conditions all around the domain. We put a gauge point (marked with star and number 1) for

later comparison with a parallel barrier simulation (Fig. 5.21b), and it is placed at a distance of

0.25 from the midpoint of the barrier.

(a) Initial condition for 20◦ barrier. ℓ = 5,
high enough for complete blockage.

(b) Initial condition for parallel rotated problem, with
ℓ = 5. The green is raised bathymetry acting as wall
boundaries.

Figure 5.21: Complete blockage example with 20◦ barrier and rotated parallel barrier
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We compare the 20◦ barrier results with the result of parallel barrier simulation with the barrier

at 𝑦𝑏𝑎𝑟 = 0.65, which is on a grid edge and where WR is used. The location 𝑦𝑏𝑎𝑟 is set to match

gauge results. The domain [0, 0] to [1.4, 1.4] was expanded for easier geometrical considerations

in comparison, but 𝑑𝑥 = 𝑑𝑦 = 0.01 is the same. The dam jump of 0.5 is rotated appropriately

(white in Fig. 5.21b). We compare the two results as before, by way of gauge comparison. We

include the GEOCLAW results as well in the blue.

At 𝑡 = 0.8 (Fig. 5.22) the wave that collided with the barrier reaches the corner where the right

side of domain and the barrier meet, and is pinched and has reflected downward. Also, the reflected

wave from the barrier reaches the bottom of the domain and reflects once more, since the boundary

condition is a wall condition (Figs. 5.22a and 5.22b).

(a) 𝑡 = 0.8: the slanted barrier problem. (b) 𝑡 = 0.8: the parallel rotated problem.

Figure 5.22: Blockage for angled barrier (20.0◦)

The difference in the two gauge results (Fig. 5.23) is due to the diffusive nature of our method.

Since the state redistribution in the transverse direction adds diffusivity to our method, we observe

slightly lower peak in the second hump (the reflected wave) for the rotated problem.

Source of diffusivity in the general angled method and comparison to original ℎ-box method

The reasons for the diffusivity in the results (Fig. 5.23) may be attributed to (a) using only the

normal ℎ-boxes in the grid, which can cover multiple small cells at once, (b) using the SRD method

in the transverse direction, and (c) correcting for conservation by using the update increments
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Figure 5.23: Blockage comparisons with WR results using gauge.

from surrounding cells. All these effects are most likely compounded to produce the diffusive

result. Also we note that we have only developed a first order method that does not account for

slope-limiting at the barrier.

In the original ℎ-box method, multiple ℎ-boxes are used at each edge of the small cell to

calculate fluxes, which then update the small cell. Our method only uses one rotated edge (the

normal barrier edge) of the small cell to calculate the update of the small cell. This makes for a

simpler method but as can be seen, comes at the cost of diffusivity. However, this can be made up

by increasing the resolution and applying second order updates away from the barrier.

5.5 Convergence for hybrid method

To confirm our slanted barrier method, we run convergence analysis. As before, we set an

example with ℓ = 5.0, and set the dam break jump to be 0.8. We ran the method on multiple

dimensions Δ𝑥 = 1/25, 1/50, 1/100, 1/150, 1/200, 1/250, 1/300 and compared the result against the

same parameters solved on a mapped grid result (further explained in ). We observe convergence

order of 1.5 , as seen in Fig. 5.24a, and observe close match in the gauge result between a lower

and higher resolution, as seen in Fig. 5.24c.
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Δ𝑥 𝑁𝑥 , 𝑁𝑦 𝐿1 Error 𝐿∞ Error
4.e-2 25 6.72e-2 1.21e-2
2.e-2 50 2.32e-2 5.15e-3
1.e-2 100 6.10e-3 1.45e-3

0.666e-2 150 2.55e-3 6.06e-4
0.5e-2 200 1.37e-3 3.02e-4
0.4e-2 250 8.6e-4 1.65e-4

0.333e-2 300 6.0e-4 1.0e-4

Table 5.1: 𝐿1 and 𝐿∞ errors computed at gauge point (0.5, 0.39).

(a) 1st order 𝐿1 convergence on 20◦ barrier example
with hybrid method

(b) 1st order 𝐿∞ convergence on 20◦ barrier example
with hybrid method

(c) Gauge comparison. Hybrid 300 × 300 and mapped
600 × 600.

Figure 5.24: Hybrid method performance on reflection only problem.
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5.6 Computational savings compared to GEOCLAW

If we compare the ℎ-box hybrid method on the complete blockage example against GEOCLAW ,

where we refine the barrier to be one cell wide, we observe the following reduction in time steps.

For a simulation on grid 250×250, we see that GEOCLAW took 4574 time steps, whereas the hybrid

ℎ-box method took 2141, for about a half reduction. The minimum Δ𝑡 observed in GEOCLAW was

7.7e-06, whereas in the hybrid method we observed 1.0e-04. The average Δ𝑡 for GEOCLAW was

6.1e-4, whereas that for ℎ-box method was 9.8e-4. For a simulation on grid 300×300, we observed

5459 time steps with GEOCLAW , compared to 2582 with the ℎ-box method, and minimum Δ𝑡 of

3.0e-05 with GEOCLAW , compared to 1.5e-04 with ℎ-box. The average Δ𝑡 for GEOCLAW was

5.1e-4, whereas that for ℎ-box method was 8.1e-4. Thus we can see that ℎ-box does relieve the

CFL timestep restriction and reduces computational cost than barrier refinement.

Figures

In the following pages we show the plots for the diagonal barrier problem in sequence. First

we see the sloping beach problem for the diagonal barrier. Then we show the flat bottom example

with its comparison to the equivalent parallel barrier example.
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𝑡 = 0.0 𝑡 = 0.0 𝑡 = 0.1 𝑡 = 0.1

𝑡 = 0.2 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.3

𝑡 = 0.4 𝑡 = 0.4 𝑡 = 0.5 𝑡 = 0.5

𝑡 = 0.6 𝑡 = 0.6 𝑡 = 0.7 𝑡 = 0.7

𝑡 = 0.8 𝑡 = 0.8

Figure 5.25: Progression of rotated barrier with sloping beach problem. On left we see the colored
contour plot and on the right, the diagonal 1D slice.
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𝑡 = 0.1 𝑡 = 0.1

𝑡 = 0.2 𝑡 = 0.2

𝑡 = 0.3 𝑡 = 0.3

𝑡 = 0.4 𝑡 = 0.4

𝑡 = 0.5 𝑡 = 0.5

𝑡 = 0.6 𝑡 = 0.6

Figure 5.26: Wave progression in diagonal barrier problem (flat bathymetry) and its rotated equiv-
alent.
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𝑡 = 0.0 𝑡 = 0.0

𝑡 = 0.1 𝑡 = 0.1

𝑡 = 0.2 𝑡 = 0.2

𝑡 = 0.3 𝑡 = 0.3

𝑡 = 0.4 𝑡 = 0.4

𝑡 = 0.5 𝑡 = 0.5

𝑡 = 0.6 𝑡 = 0.6

Figure 5.27: 1D slice of the progression of wave in diagonal barrier problem in Fig. 5.26 (left) and
its rotated equivalent (right).
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Chapter 6: State Redistribution

State redistribution (SRD) is a post-processing method, which seeks to relieve CFL restriction

by averaging out an unstable update a posteriori. The idea is to take a CFL violating, unstable

update and fix it by redistributing the update with neighboring cells. Because the method happens

after the update and does not involve calculations on the fly, it is a faster algorithm than the ℎ-box

method. From this chapter forward, we will devote our cut cell methods to the two 2D model

problems, the 20◦ linear barrier and the 𝑉 barrier. Furthermore, the numerical method on the

regular sized cells is what has been delineated in Chapter 3, so we will discuss the numerical

method on cut cells only, namely SRD.

6.1 Numerical method on cut cells

6.1.1 Attempt with ℎ-boxes: Motivation for Using State Redistribution (SRD)

As discussed in the previous chapter, we have attempted to solve this model problem using

ℎ-box type methods, with parallel, and diagonal barriers to deal with the small cell problem. The

evident difficulties of the ℎ-box method applied to our model problem are (1) cumbersome geo-

metrical calculations, (2) complicated update formulas, and (3) ambiguity in more complex cases.

The biggest challenge of the ℎ-box method is finding fluxes at the non-barrier edges of the cut

cells (Fig. 6.1). This is because ℎ-box extensions off those edges will necessarily cross over the

barrier, making it difficult to calculate their average. We will show how SRD overcomes all these

challenges and can simulate arbitrary angled barriers and the 𝑉-shaped barriers.
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Figure 6.1: The shape of one ℎ-box applied to problem at hand, extruding from edge in red. Note
how it crosses over the barrier. LTS avoids this by taking normal ℎ-box averages (e.g. in Fig. 5.11)
at multiple time steps, all the while tracking waves from every edge. In 2D, this will become much
more complicated, as there will be waves from multiple edges that will hit the barrier at different
times, calling for a simpler method.

6.1.2 State Redistribution (SRD)

The equation Eq. (3.6) or Eq. (3.19) shown previously does not work on cut cells because of

the geometry of the cut cells. We have different kinds of cut cells as shown in Fig. 6.2.

Figure 6.2: All possible types of cut cells for a barrier segment [20].

Instead, we apply the state redistribution method on these types of cut cells in 2D. The main

idea of the method is to first do a conservative but unstable update on all cut cells and correct for

the instability by doing a stable redistribution of those updates with neighboring cells.

6.1.3 1D SRD

The main components of the method are best explained in 1D. In Fig. 6.3 we have an irregular

grid with two small cells,𝑄1 and𝑄3, with areas 𝛼Δ𝑥 (𝛼 < 0.5) [42], where a normal update cannot

be taken due to the CFL condition. Every other grid cell has length Δ𝑥. This is the same grid setup

as in the example in [12], but we provide a slightly different approach for neighborhood selection

which will also apply to our 2D model problems.

Before applying the state redistribution, each cell, including the small cells, is given a regular
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update with the Δ𝑡 prescribed by the CFL condition with a regular Δ𝑥, regardless of individual cell

size:

𝑄𝑛+1
𝑖 = 𝑄𝑛𝑖 −

Δ𝑡

𝛼𝑖Δ𝑥
(A+Δ𝑄𝑖−1/2 + A−Δ𝑄𝑖+1/2),

where 𝛼𝑖 = 𝛼 when 𝑖 = 1, 3 and 𝛼𝑖 = 1 when 𝑖 ≠ 1, 3. This will be an unstable yet conserva-

tive update for the small cells because all the fluctuation (A+Δ𝑄𝑖−1/2 + A−Δ𝑄𝑖+1/2) is taken into

account.

𝑄0

𝑁0

𝑄1 𝑄3𝑄2
𝑁1

𝑁2

𝑄4
𝑁3

𝑄5

𝑁5𝑁4

· · · · · ·

Figure 6.3: An irregular grid with small cells and the neighborhoods used in SRD in blue and red.
A variation from [12].

Then we define neighborhoods for each cell, {𝑁𝑖}, which are collection of cells to achieve a

collective area greater than 0.5Δ𝑥. This means that for cells with size > 0.5Δ𝑥, they are their own

neighborhood, e.g. 𝑁0 = 𝑄0 (blue in Fig. 6.3). For the small cells, we can select the regular sized

cell immediately to their right and this achieves a collective area larger than 0.5Δ𝑥. The two red

boxes in Fig. 6.3 are such neighborhoods for 𝑄1 and 𝑄3. This is different from the example shown

in [12] where neighboring cells are taken from both sides. However, as we shall see, forming

this one sided neighborhood is conservative and will be needed in our model problem due to the

presence of the zero width barrier.

The neighborhoods also have a special average. The average of a neighborhood is calculated

by using its comprising cells’ averages, areas, and their overlap counts, which is the total number

of neighborhoods lying over them. For instance, cells 𝑄2 and 𝑄4 both have overlap count of 2
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(𝑁1, 𝑁2 and 𝑁3, 𝑁4 in Fig. 6.3). This gives the following neighborhood averages:

𝑁1 =
1

𝛼 + 1
2
(𝛼𝑄𝑛+1

1 + 1
2
𝑄𝑛+1

2 ), (6.1)

𝑁3 =
1

𝛼 + 1
2
(𝛼𝑄𝑛+1

3 + 1
2
𝑄𝑛+1

4 ), (6.2)

𝑁𝑖 = 𝑄
𝑛+1
𝑖 for 𝑖 ≠ 1, 3. (6.3)

Note that Δ𝑥 factors out and weights for 𝑄2, 𝑄4 have overlap count 2 in the denominator.

Finally, stabilized updates of the cells are found by using the neighborhood average values

lying over the cells and averaging them if there are multiple neighborhoods:

𝑄𝑛+1
2 =

1
2
(𝑁1 + 𝑁2) (6.4)

𝑄𝑛+1
4 =

1
2
(𝑁3 + 𝑁4) (6.5)

𝑄𝑛+1
𝑖 = 𝑁𝑖 for 𝑖 ≠ 2, 4. (6.6)

Note that the discounting by overlap count in (Eqs. (6.1) and (6.2)) gives the effective volume

of the neighborhood and is used for conservation purposes as can be seen by checking the mass

from before to after SRD stabilization:

pre-SRD︷                                      ︸︸                                      ︷
𝑄0 + 𝛼𝑄1 +𝑄2 + 𝛼𝑄3 +𝑄4 +𝑄5

= 𝑄0 + 𝛼𝑁1 +
1
2
(𝑁1 + 𝑁2) + 𝛼𝑁3 +

1
2
(𝑁3 + 𝑁4)︸                                               ︷︷                                               ︸

𝑆𝑅𝐷

+𝑄5

= 𝑄0 + (𝛼𝑄1 +
1
2
𝑄2) +

1
2
𝑄2 + (𝛼𝑄3 +

1
2
𝑄4) +

1
2
𝑄4 +𝑄5

= 𝑄0 + 𝛼𝑄1 +𝑄2 + 𝛼𝑄3 +𝑄4 +𝑄5.︸                                       ︷︷                                       ︸
post-SRD

We show numerically that this 1D SRD method indeed does provide mass conservation. We
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implement the method on a problem with barrier height ℓ that is set to 1.0, with water height ℎ

at 0.5, and a dam break height ℎ𝑑 of 0.7. The small cell ratio 𝛼 is 0.01, located at 𝑖 = 25. The

water is contained in one side of the barrier due to the tall height of barrier (Fig. 6.4). We show the

conservation of height calculated as

𝑀𝑇 =

50∑︁
𝑖=1

Δ𝑥𝑖ℎ𝑖,

and one can see that the relative difference of total height oscillates around -1.5e-16.

(a) Initial (b) Reflection

(c) Total mass changes across time.

Figure 6.4: 1D dam break blockage problem in SRD with 50-cell grid from [0,1] with 𝛼 = 0.01
and ℓ = 1.0.

6.1.4 2D SRD method

In this section we describe the original 2D SRD method applicable for impermeable solid

boundaries using wave propagation and fluctuations. The method here will apply to our case with

the permeable barrier interface, with the exception of the barrier edge handling.

The added complexity is now finding the conservative but unstable updates of the geometrically
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specific cut cells during the first step of SRD method. There are 8 total types of cut cells (4 if we

disregard the sign of the cut slope) as seen in Fig. 6.2. This means that we must update the cut

cells in at most 4 different ways depending on their shapes.

Conservative but unstable update

The way we compute the conservative but unstable updates is by first identifying the cut cell

edge lengths. Using the side lengths, we weight the waves arising from those edges as seen in

Fig. 6.5. The waves from the vertical/horizontal edges are computed by using wave propagation

method with the two adjacent cell averages.

ℓ1

ℓ2ℓ1A+Δ𝑄𝑖−1/2, 𝑗

ℓ2B−Δ𝑄𝑖 , 𝑗+1/2

𝑗

𝑖

(a) The weighted waves used to update the
cut cell (𝑖, 𝑗). The wave from the left edge
is weighted by 𝑙1 and the wave from the top
edge is weighted by 𝑙2.

ℓ3 𝑗

𝑖

ℓ3A+Δ𝑄̆𝑖, 𝑗

(b) The normal averages used to produce
waves at the barrier edge to update the cut
cell (𝑖, 𝑗). The wave from the barrier edge
is weighted by 𝑙3.

Figure 6.5: Ratio of edge lengths to mesh size as weights on waves from edges of a cut cell.

At the barrier edge, the original SRD method computes fluctuation waves by first creating

normal “ℎ-boxes” [7] extending towards both sides of the barrier edge as in Fig. 6.5b. The states

of these ℎ-boxes are computed by volume weighting the averages of the covered cells and by

rotating their momentum with respect to the barrier direction, denoted by 𝑄̆ in Fig. 6.5b. The

average of the ℎ-box intruding into the solid region is computed by simply negating the velocity

in the normal direction to the barrier (Fig. 6.5b). Since SWE is rotationally invariant, the waves

at the barrier edge are calculated using the method described in Section 3.3 with these two ℎ-box

averages.
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Once the cut cells are updated conservatively using the weighted waves at each edge, neigh-

borhoods are found for each cell to compute the neighborhood averages for the SRD updates. The

determination of overlap counts and small cell criteria (< 0.5Δ𝑥Δ𝑦) are all the same as in the 1D

case, so we only show how neighborhoods are formed in the 2D case in Section 6.1.4.

Finding neighborhoods

The two possible types of neighborhood are the normal and the grid neighborhood. As can be

seen in the left subfigure of Fig. 6.6, a normal neighborhood of cell (𝑖, 𝑗) only uses the cell directly

below the cut cell. Note that the neighboring cell could also be a cut cell. As long as the total

area of the neighborhood exceeds 0.5Δ𝑥Δ𝑦, it is a valid neighborhood. There are cases, however,

when just including the directly normal cell does not result in a neighborhood of size bigger than

0.5Δ𝑥Δ𝑦, as in the right subfigure in Fig. 6.6. In this case, the neighborhood of cell (𝑖, 𝑗) needs not

only cell (𝑖, 𝑗 −1) but also the cells (𝑖−1, 𝑗 −1) and (𝑖−1, 𝑗) to be included in their neighborhood.

This type of neighborhood is used for cut cells that are especially constricted as in the figure and

we will not use this type as our V barrier is obtuse.

𝑗

𝑖

𝑗

𝑖𝑖 − 1

Figure 6.6: Two types of neighborhoods in 2D SRD. The solid region is made opaque for clarity
in identifying the indices.

6.1.5 SRD applied to model problem

In our model problem the main adjustment we need to make to the original SRD method is

handling the presence of the additional state on the other side of the barrier. We denote the upper

cut cell by the superscript 𝑄𝑈
𝑖, 𝑗

and the lower cut cell by the superscript 𝑄𝐿
𝑖, 𝑗
. As shown in Fig. 7.4,
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we remark that aside from the barrier edge, the weighted wave propagation method as illustrated

in Fig. 6.5a applies to both the upper cut cell and the lower cut cell at each non-barrier edge.

We now need to allow communication between the two sides of the cut through the barrier

edge. Consequently, the key differences from the original SRD method are (1) the states used

for the Riemann problem at the barrier edge and (2) calculation of fluctuation at the barrier edge,

namely wave redistribution.

𝑗

𝑖

ℓ1

ℓ2ℓ3
ℓ4

ℓ1A+Δ𝑄𝐿
𝑖−1/2, 𝑗

ℓ2B−Δ𝑄𝐿
𝑖, 𝑗+1/2

ℓ4B−Δ𝑄𝑈
𝑖, 𝑗+1/2

ℓ3A+Δ𝑄𝑈
𝑖−1/2, 𝑗

(a) The weighted waves used to update
both cut cells 𝑄𝑈

𝑖, 𝑗
and 𝑄𝐿

𝑖, 𝑗
at the non-

barrier edges. Weights 𝑙𝑖 are lengths of the
cut cell edges.

𝑗

𝑖

ℓ5A±Δ𝑄̆𝑖, 𝑗

𝑄̆𝐿
𝑖, 𝑗

𝑄̆𝑈
𝑖, 𝑗

(b) The rotated averages 𝑄̆𝑈/𝐿
𝑖, 𝑗

of both cut
cells are used to produce waves at the bar-
rier edge to update the cut cells 𝑄𝑈/𝐿

𝑖, 𝑗
. The

wave is computed using wave redistribu-
tion and weighted by barrier edge length 𝑙5.

Figure 6.7: Weighted waves with edge lengths of a cut cell for both upper and lower cut cells.

Wave redistribution at barrier edge

For the Riemann problem at the barrier edge, we cannot simply use the ℎ-box averages with

negated normal momentum as done in the original SRD method due to the presence of state vari-

ables on either side. We must define a new Riemann problem to enable overtopping. In fact, we

do not need to use the normal ℎ-boxes at all to compute the fluctuation. Instead we can simply use

the rotated state variables 𝑄̆𝑈
𝑖, 𝑗
, 𝑄̆𝐿

𝑖, 𝑗
on either side of the barrier cut:

𝑄̆ℎ
𝑖, 𝑗 = 𝑅𝑖, 𝑗𝑄

ℎ
𝑖, 𝑗 , (6.7)
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where ℎ = 𝐿 or𝑈, and

𝑅𝑖, 𝑗 =


1 0 0

0 𝑛̂1 𝑛̂2

0 𝑡1 𝑡2


,

with rotation vectors 𝑛̂, 𝑡 being simply orthonormal pairs to the barrier. This simple usage of cut

cell averages also avoids any geometrical complications at the V-tip, making SRD a better method

for more complicated shaped barriers.

Once we have rotated the states, these two states become the left and right states of two ghost

problems, as described in Chapter 4. The wave redistribution method then redistributes waves from

the two ghost Riemann problems, giving us A±Δ𝑄̆𝑖, 𝑗 . Following the algorithm in [27] we rotate

them back:

A±Δ𝑄𝑖, 𝑗 = 𝑅
𝑇
𝑖, 𝑗A±Δ𝑄̆𝑖, 𝑗 . (6.8)

These waves are then weighted by the length of the barrier cut edge, as shown in Fig. 6.7b.

These weighted waves are then used to update the cut cells in a conservative but possibly

unstable way. In general, this update will look like:

𝑄
𝐿,𝑛+1
𝑖, 𝑗

= 𝑄
𝐿,𝑛
𝑖, 𝑗

− Δ𝑡

𝛼𝐿
𝑖, 𝑗

(ℓ𝑖, 𝑗A+Δ𝑄𝑖, 𝑗

+ ℓ𝐿
𝑖−1/2, 𝑗A

+Δ𝑄𝐿
𝑖−1/2, 𝑗 + ℓ

𝐿
𝑖+1/2, 𝑗A

−Δ𝑄𝐿
𝑖+1/2, 𝑗

+ ℓ𝐿
𝑖, 𝑗+1/2B

−Δ𝑄𝐿
𝑖, 𝑗+1/2 + ℓ

𝐿
𝑖, 𝑗−1/2B

+Δ𝑄𝐿
𝑖, 𝑗−1/2), (6.9)
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𝑄
𝑈,𝑛+1
𝑖, 𝑗

= 𝑄
𝑈,𝑛
𝑖, 𝑗

− Δ𝑡

𝛼𝑈
𝑖, 𝑗

(ℓ𝑖, 𝑗A−Δ𝑄𝑖, 𝑗

+ ℓ𝑈
𝑖−1/2, 𝑗A

+Δ𝑄𝑈
𝑖−1/2, 𝑗 + ℓ

𝑈
𝑖+1/2, 𝑗A

−Δ𝑄𝑈
𝑖+1/2, 𝑗

+ ℓ𝑈
𝑖, 𝑗+1/2B

−Δ𝑄𝑈
𝑖, 𝑗+1/2 + ℓ

𝑈
𝑖, 𝑗−1/2B

+Δ𝑄𝑈
𝑖, 𝑗−1/2), (6.10)

where 𝛼𝑈/𝐿
𝑖, 𝑗

is the area of cut cell, ℓ𝑖, 𝑗 the length of the barrier edge, and ℓ𝑈/𝐿
𝑖±1/2, 𝑗 and ℓ𝑈/𝐿

𝑖, 𝑗±1/2

represent the lengths of the vertical and horizontal edges of the cut cell, respectively. Note that

there are five terms as the maximum number of cut cell edges is five, but some of them will drop

depending on the shape of the cut cell (e.g. for upper cut cell in Fig. 6.7, we have ℓ𝑈
𝑖−1/2, 𝑗 = ℓ3,

ℓ𝑈
𝑖+1/2, 𝑗 = 0, ℓ𝑈

𝑖, 𝑗+1/2 = ℓ4, ℓ
𝑈
𝑖, 𝑗−1/2 = 0).

Neighborhood and overlap count

Once we have updated each cut cell as described above, we then find the neighborhoods for

each cut cell. In our model problems, finding the neighborhood for the cut cells is an easier task,

as we can use normal neighborhoods for all of them.

𝑗 + 1

𝑗

𝑖

𝑗

𝑗 + 1

𝑖𝑖 − 1

Figure 6.8: Normal neighborhoods sufficient for model problems. On the left, we show upper
neighborhood (in red) for cell (𝑖, 𝑗) and lower neighborhood (in blue) for cell (𝑖, 𝑗 + 1) and on the
right, we show upper neighborhoods (red) for cells (𝑖 − 1, 𝑗) and (𝑖, 𝑗) and lower neighborhoods
(blue) for cells (𝑖 − 1, 𝑗 + 1) and (𝑖, 𝑗 + 1).

As shown in Fig. 6.8, for each small cell, we choose the cell directly above or below as this will

suffice to produce a neighborhood whose area is greater than 0.5Δ𝑥Δ𝑦. For every cut cell produced

by either the linear or V barrier, there will always be a cell above (for upper cut cell) or below
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(for lower cut cell) whose 𝛼 ≥ 0.5. This ensures using normal neighborhood for both the upper

and lower half of the cut to be valid. Note that the obtuse angle of the V barrier enables us to use

normal neighborhoods extensively. Finding the neighborhood for the V barrier essentially becomes

a double copy of the linear problem. Note also that we must only take one sided neighborhoods to

avoid mixing states across barrier, as alluded to in the 1D section.

The overlap count also becomes simplified in both model problems when we use the normal

neighborhoods. For small cut cells on either side, we have an overlap count of 1, as no other cut

cell uses them for neighborhood formation. For the normal neighboring cells above or below small

cut cells, we have an overlap count of 2, as they have 𝛼 ≥ 0.5 and are their own neighborhoods,

in addition to being a neighbor to the small cut cells. If a cut cell has 𝛼 ≥ 0.5, then it will

automatically be its own neighborhood and have overlap count of 1. Thus the overlap counts

alternate between 1 and 2, depending on whether the cell is a small cut cell, non-small cut cell, or

a neighbor of a small cut cell.

These overlap counts and the areas of the neighborhood cells then form neighborhood averages

𝑁𝑖, 𝑗 :

𝑁
𝑈/𝐿
𝑖, 𝑗

=
©­­«

1

𝛼
𝑈/𝐿
𝑖, 𝑗

+
𝛼
𝑈/𝐿
𝑖, 𝑗±1
2

ª®®¬
©­«𝛼𝑈/𝐿𝑖, 𝑗

𝑄
𝑈/𝐿
𝑖, 𝑗

+
𝛼
𝑈/𝐿
𝑖, 𝑗±1

2
𝑄
𝑈/𝐿
𝑖, 𝑗±1

ª®¬ , (6.11)

for small cut cells (𝑖, 𝑗), where𝑄𝑈/𝐿
𝑖, 𝑗

represent the unstable but conservative update (the superscript

𝑛+1 is omitted for clarity and reserved for final update). For all other cells, we have 𝑁𝑈/𝐿
𝑖, 𝑗

= 𝑄
𝑈/𝐿
𝑖, 𝑗

.

All in all, we have for our update formula for all small cut cells (𝑖, 𝑗):

𝑄
𝑛+1,𝑈/𝐿
𝑖, 𝑗

=


𝑁
𝑈/𝐿
𝑖, 𝑗

if overlap count = 1

1
2 (𝑁

𝑈/𝐿
𝑖, 𝑗

+ 𝑁𝑈/𝐿
𝑖, 𝑗±1) if overlap count = 2

. (6.12)
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6.2 Model problems

All the model problems presented below have steady water height of ℎ = 1.2 and a dam jump

of Δℎ = 0.8 or 1.5, giving the overall height of the dam break to be ℎ𝑑 = 2.0 or 2.7. The barrier

heights ℓ are chosen to be either ℓ = 1.5 or ℓ = 5.0. These are chosen to test both (1) complete

reflection of incoming wave by the barrier (Δℎ = 1.5, ℓ = 5.0) and (2) overtopping of wave over

the barrier (Δℎ = 0.8, ℓ = 1.5). The boundary conditions for the problems are wall boundaries

everywhere except for extrapolation condition on the overtopped side in the overtopping examples.

For comparison, we run two simulations. First is with the same initial condition in GEOCLAW ,

except with the barriers being single cell wide bathymetric jumps. We note that GEOCLAW results

are compared to ensure physical reliability of our results and that only similarity in quality of the

numerical solution is sought after. Our problem is the numerical limit that the barrier thickness ap-

proaches zero, but it is difficult to attain reliable numerical solution using GEOCLAW by thinning

out the bathymetric jump. Therefore, we compare our simulations against the second, true numer-

ical solutions performed in the mapped grid examples, where we use grid transformations and the

wave redistribution method on a computational grid edge mapped to the barrier on the physical

grid. We compare the 2D contour plots of water height at specific times from both the SRD cut cell

method and GEOCLAW /mapped examples and the gauge data, which are height measurements at

a specified location in the domain (asterisked), in order to perform convergence analysis.

6.2.1 The 20◦ angled barrier

Here we present the first numerical example with a positively sloped 20◦ barrier, with a 150×

150 grid. We first show a sufficiently high barrier example that prohibits overtopping of an incom-

ing wave and then a lower barrier that permits overtopping (Fig. 6.9). In the reflection example, we

place our gauge at (0.5, 0.39) just off the barrier, to capture the reflection close to the wall. In the

overtopping example, we place two gauges, one at (0.5, 0.39) as before and another at (0.5, 0.8)

to both capture the reflection and also the overtopped wave further away from the barrier.
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Case of Reflection Only

We test a dam break problem to simulate the incidence of oblique waves upon the barrier.

(a) Reflection only case: ℓ = 5.0, ℎ𝑑 = 2.7. (b) Overtopping case: ℓ = 1.5, ℎ𝑑 = 2.0.

Figure 6.9: Initial condition for two problems. Both on 150×150 grid.

In order to highlight the wave reflections we amplify the dam break size as well to 1.5. We

observe very good comparison at both time snapshots (Fig. 6.10 and Fig. 6.11).

(a) SRD (b) GEOCLAW

Figure 6.10: Comparison of SRD with GEOCLAW at time 𝑡 = 0.3

(a) SRD (b) GEOCLAW

Figure 6.11: Comparison of SRD with GEOCLAW at time 𝑡 = 0.7.

At time 𝑡 = 0.3, the incoming wave is gliding up along the barrier while being reflected back in

direction normal to the barrier. One can observe how the wave front on the right has not yet reached
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the barrier. By time 𝑡 = 0.7, the reflected wave has bounced off the wall boundary condition on

the bottom and reflected back onto the barrier, repeating the gliding motion as seen on the lower

left region of the barrier. We can see that the gauge heights for all time are also in good agreement

between the two methods (Fig. 6.12).

Figure 6.12: Time profile at Gauge 1 (0.5, 0.39) for complete blockage example with slanted
barrier. A slight phase error is shown towards the latter time period, which may be due to slight
difference in the placement of barriers in the two examples.

Case of Overtopping

Next we test overtopping using the same slanted barrier. This time we take Δℎ = 0.8 and allow

the the top edge of the domain to have extrapolation boundary where we let waves exit the domain.

We observe from both SRD results and GEOCLAW results that the wave is abated from the

barrier and proceeds in the same direction after overtopping (Fig. 7.7). The reflection shown at

time 𝑡 = 0.7 on the lower side of the barrier is similar to the reflective behavior observed already

in the complete blockage example (Fig. 7.8). An interesting observation to be made is at 𝑡 = 1.4,

the gliding waves ‘pinch up’ to achieve overtopping momentum on the right, whereas it does not

overtop on the left part of the barrier.

The similarity in behavior (Fig. 7.7-Fig. 7.9) and also magnitude of waves as seen in Fig. 7.10

assure us of the physicality of the SRD results. We note that there is characteristic difference in

the overtopped wave profile Fig. 6.16a. The GEOCLAW example has a lower dip at the end of

the first wave than the SRD. We attribute this to the presence of the bathymetric cell jump in the

GEOCLAW example causing a rarefaction at the “behind” interface of the jump (i.e. on the side
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(a) SRD (b) GEOCLAW

Figure 6.13: Comparison of SRD with GEOCLAW at 𝑡 = 0.3.

(a) SRD (b) GEOCLAW

Figure 6.14: Comparison of SRD with GEOCLAW at 𝑡 = 0.7.

(a) SRD (b) GEOCLAW

Figure 6.15: Comparison of SRD with GEOCLAW at 𝑡 = 1.4.

of the overtopping) due to the large disparity in the heights [33]. Also the peaks are slightly off-

centered due to the nonzero thickness of barrier causing earlier overtopping for GEOCLAW . The

reflected wave shown in Fig. 6.16b, however, is virtually identical.
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(a) Time profile of Gauge 1 (0.5,0.8). (b) Time profile of Gauge 2 (0.5,0.39).

Figure 6.16: Gauge profiles compared with GEOCLAW results. Note that there is a discrepancy in
the overtopped gauge (left), as water feels the big bathymetric variation in the GEOCLAW case.

Comparison to mapped grid

We validate the SRD results against a mapped grid example. We transform the computational

uniform grid (𝑥, 𝑦) into a skewed grid 𝑓𝐿 (𝑥, 𝑦) (Fig. 6.17):

𝑓𝐿 (𝑥, 𝑦) = (𝑥, 𝜇𝐿 (𝑦)), (6.13)

𝜇𝐿 (𝑦) =


𝐿 (𝑥)
𝑦∗ 𝑦 if 𝑦 ∈ [0, 𝑦∗]

1−𝐿 (𝑥)
1−𝑦∗ (𝑦 − 1) + 1 if 𝑦 ∈ [𝑦∗, 1]

, (6.14)

where 𝐿 (𝑥) is the barrier line equation and 𝑦∗ is the computational 𝑦-edge mapped to the barrier

edge (lime green in Fig. 6.17), with 𝑦∗ =
𝑦1+𝑦2

2 with the subscripts denoting vertex numbers as

denoted in Fig. 2.2a. At 𝑦 = 𝑦∗ wave redistribution is applied.

Figure 6.17: Mapped grid for the 20◦ barrier. Coarsened to 30 × 30 to highlight mapping.

In Figs. 6.18 and 6.19, we observe the gauge results and contours plot at 𝑡 = 1.4 between
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(a) Time profile of Gauge 1 (0.5, 0.8). (b) Time profile of Gauge 2 (0.5, 0.39).

Figure 6.18: Gauge comparisons between SRD and mapped grid. Both on 900 × 900 grid.

(a) SRD (b) Mapped grid

Figure 6.19: Comparison between SRD (900 × 900) and mapped grid (900 × 900) at 𝑡 = 1.4.

the SRD and the mapped results both on 900 × 900 grid and see the disappearance of the earlier

differences in the wave shape.

Convergence

For convergence studies we observe the results at gauge point against the mapped grid (900 ×

900) result, as would be of interest in storm simulations. Also we only study the convergence of the

overtopped examples, for similar reasons as above mentioned, namely, that in realistic scenarios

the barriers will be overtopped by incoming waves.

The convergence is shown in both Table 6.1 and Fig. 6.20. We observe a convergence order of

approximately 1.7 for both gauge points in the 𝐿1 norm and somewhere in between 1.5 and 2.1 in

the 𝐿∞ norm. We note that gauge 2 is closer to the barrier and yet the order of convergence is very

similar to that for gauge 1, which is further away from the barrier. This order of convergence is
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𝐿1 Error 𝐿∞ Error
Δ𝑥 𝑁𝑥 , 𝑁𝑦 Gauge 1 Gauge 2 Gauge 1 Gauge 2

4.e-2 25 8.58e-3 2.70e-2 6.46e-03 4.72e-03
2.e-2 50 3.04e-3 1.14e-2 1.77e-03 1.74e-03
1.e-2 100 8.46e-4 3.98e-3 4.02e-04 6.62e-04

0.666e-2 150 3.89e-4 2.10e-3 1.61e-04 4.22e-04
0.333e-2 300 1.08e-4 5.23e-4 3.65e-05 1.30e-04
0.222e-2 450 5.37e-5 2.08e-4 1.47e-05 5.20e-05
0.1666-2 600 4.63e-5 1.01e-4 7.08e-06 1.82e-05
0.1333-2 750 3.44e-5 5.59e-5 3.45e-06 1.43e-05
0.1111-2 900 3.21e-5 3.14e-5 3.58e-06 8.92e-06

Table 6.1: 𝐿1 and 𝐿∞ errors computed against mapped grid results at gauge point 1 (0.5,0.8) and 2
(0.5, 0.39).

surprising, given that we are not doing any gradient reconstruction at the cut cells but only using

piecewise constant values [43]. This is most likely due to use of transverse solvers away from

the barrier [10]. And a surprising note to be made is that in the 𝐿∞ norm there is almost second

order convergence in gauge 1, which looks promising for SRD method in its capability to model

overtopping waves.

(a) 𝐿1 error order around 1.7. (b) 𝐿∞ error order around 1.5 to 2.1.

Figure 6.20: Convergence plots with mapped grid 900×900 for 20◦ problem.

We also do convergence studies with the GEOCLAW example by comparing our SRD results

against GEOCLAW example on 1200 × 1200 grid as our reference solution and the solution con-

verges with greater than one order of convergence around 1.3 as seen in Fig. 6.21.
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Figure 6.21: 𝐿1 convergence of gauge profiles compared to GEOCLAW results on 1200×1200 grid
(right) Order of 1.34 is observed at gauge 1 (further from barrier) and 1.22 observed at gauge 2
(closer to barrier).

6.2.2 117◦ angled V barrier

The inspiration for the V barrier problem comes from the Maeslant Barrier in the Netherlands

(Fig. 6.22), which closes to form a curved V-shape.

Figure 6.22: The Maeslant Barrier in the Netherlands. The barrier can approximately be repre-
sented as a V-shape (highlighted in red).

We also note that the concave part of the Maeslant barrier is where the incoming wave is

expected to hit (i.e. V faces towards the sea). Thus we model our problem such that a dam break

initiates a wave from the top side of the V barrier (Fig. 6.23). Also, in [7], a similar example is

solved for the Euler equations, but with no flux allowed at the V boundary and with computations

only for shock wave reflection.
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(a) Reflection only case: ℓ = 5.0, ℎ𝑑 = 2.7. (b) Overtopping case: ℓ = 1.5, ℎ𝑑 = 2.0.

Figure 6.23: Initial conditions for two problems. Reflection: 150 × 150, overtopping: 300 × 300
grid.

Case of Reflection Only

Fig. 6.24 to Fig. 6.25 show an example with 150×150 grid in a domain of [0, 1]×[0, 1] for both

SRD and GEOCLAW and show a nice containment of the water behind the barrier. At Fig. 6.24,

we can see the incoming wave gliding across each side of the V barrier towards the center. At

Fig. 6.25, the gliding waves have crossed each other and are spreading radially outward away from

the center of the barrier, leaving a dip (in blue). In Fig. 6.26, we show the wave profile at gauge

point 1. We observe two waves: first initial wave that is reflected at the center and second wave

reflected from the side boundary conditions. The second wave is lower in amplitude as it has lost

some of its momentum.

(a) SRD (b) GEOCLAW

Figure 6.24: Solution at 𝑡 = 0.2. Because the barrier does not allow overtopping, the two problems
are numerical the same.
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(a) SRD (b) GEOCLAW

Figure 6.25: Solution at 𝑡 = 0.7. The gliding reflected waves have crossed each other in opposite
directions.

Figure 6.26: Time profile at Gauge 1 (0.5,0.5). Slight difference in the peaks are likely due to the
diffusive nature of SRD, introduced by the neighborhood averaging.

Case of Overtopping

We increase the resolution to 300×300 for clearer results and first do a comparison against

GEOCLAW results to show the physicality of our results. From Fig. 6.27 to Fig. 6.29, we can

see the qualitative similarities of the two 2D plots. At time 𝑡 = 0.3, we see the reflecting wave’s

moving into the center (where the amplitude reaches peak in gauge 1/2 as in Fig. 6.30a) and the

overtopping wave’s “wing”-like structure just below the V barrier (Fig. 6.27). In Fig. 6.28, we see

the overtopping wave moving radially outward from the center, more captured in the SRD results

than GEOCLAW . Finally in Fig. 6.29 we see the small island of wave amplitude at the bottom

center of the plot in both results.

We place our gauges at either side of the V barrier (0.25, 0.3), (0.75, 0.3), (0.25, 0.6), (0.75, 0.6)

in order to test for symmetry in the results Fig. 6.30. We observe the major peaks lining up between

the two results of SRD and GEOCLAW . Again we see slightly earlier peak and deeper dip in the
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(a) SRD (b) GEOCLAW

Figure 6.27: Solution at 𝑡 = 0.3. Both 300 × 300 grid. Note the structure of the just overtopped
wave.

(a) SRD (b) GEOCLAW

Figure 6.28: Solution at 𝑡 = 0.7. Note the radially outward moving wave from the center of the V
barrier.

(a) SRD (b) GEOCLAW

Figure 6.29: Solution at 𝑡 = 1.4. Note the “island” of peak at the bottom center.

overtopped waves, due to the presence of physical barrier.

Computational Superiority to Refinement using GEOCLAW

To highlight the superiority of using the SRD method on the zero width barrier over using bar-

rier refinement, we compare the computational costs of a V barrier simulation on GEOCLAW with
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(a) Time profile of Gauge 1,2 (0.25(0.75), 0.6). (b) Time profile of Gauge 3,4 (0.25(0.75), 0.3).

Figure 6.30: Gauge profiles compared with GEOCLAW results: 300 × 300 grid.

adaptive (double) refinement at the barrier and SRD with same resolution. In reality the refine-

ment level required at barriers will be greater than 2 as barriers are much skinnier than surrounding

bathymetric surfaces. (The barrier in these GEOCLAW runs is two cells wide, to get down to single

cell width in the adaptive mesh refinement.)

We show results from using two resolutions Δ𝑥 = 1/300, 1/450. These already show the

computational benefit we derive from our proposed method. We compare the Δ𝑡’s and number of

steps taken from both SRD and GEOCLAW simulations. For Δ𝑥 = 1/300 we observe that we get

tenfold increase in the minimum Δ𝑡 (from 8.6e-06 to 9.6e-05) and 320 % increase in the average Δ𝑡

(from 0.00028 to 0.0012) and about fivefold decrease in the number of steps taken (9958 steps to

1850 steps). For Δ𝑥 = 1/450 we observe about 70-fold increase in the minimum Δ𝑡 (from 2.9e-06

to 2.2e-04) and 340 % increase in average Δ𝑡 (from 1.7e-4 to 7.7e-4) and 5.5 times reduction in

number of steps taken (15861 to 2843 steps).

6.2.3 Comparison to mapped grid

The mapped grid is shown in Fig. 6.31. Here we transform the computational uniform grid into
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Figure 6.31: Mapped grid for the V barrier. Coarsened to 50 × 50 to highlight mapping.

a physical V shaped grid akin to what is done in [7], with the following mapping 𝑓 :

𝑓𝑉 (𝑥, 𝑦) = (𝑥, 𝜇𝐿 (𝑦)), (6.15)

𝜇𝑉 (𝑦) =



𝐿1 (𝑥)
𝑦∗ 𝑦, (𝑥, 𝑦) ∈ [0, 0.5] × [0, 𝑦∗]

1−𝐿1 (𝑥)
1−𝑦∗ (𝑦 − 1) + 1, [0, 0.5] × [𝑦∗, 1]

𝐿2 (𝑥)
𝑦∗ 𝑦, [0.5, 1] × [0, 𝑦∗]

1−𝐿2 (𝑥)
1−𝑦∗ (𝑦 − 1) + 1, [0.5, 1] × [𝑦∗, 1]

, (6.16)

where 𝑦∗ is the computational barrier edge taken to be 𝑦∗ = 0.5(𝑦1 + 𝑦2) (Fig. 2.2b), and 𝐿1(𝑥)

is the barrier line from coordinate 1 to 2 and 𝐿2(𝑥) that from coordinate 2 to 3. We apply wave

redistribution (Section 6.1.5) at 𝑦∗.

Convergence

In Fig. 6.32 we plot the gauge results of 1250 × 1250 mapped grid V barrier example and

1050 × 1050 SRD example. We do see that the SRD results contain more fine movements of the

wave and that the mapped grid example produces more smooth wave patterns. Overall, however,

we see convergence as shown in Table 6.2 and Fig. 6.34 (for gauge points 1 through 4). The order

of convergence are somewhere around 1.6 for both gauge points (Fig. 6.34). Again we observe

greater-than-one order of convergence despite using piecewise constant approximations. However,

unlike in our linear barrier example, the 𝐿∞ norm convergence is comparable to 𝐿1 convergence.

Nonetheless, both gauges show first order convergence.
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(a) Time profile of Gauge 1,2 (0.25(0.75), 0.6). (b) Time profile of Gauge 3,4 (0.25(0.75), 0.3).

Figure 6.32: Gauge profiles compared with mapped grid results: 1050× 1050 for SRD and 1250×
1250 for mapped grid.

Finally, in Fig. 6.33 we show two 2D plots comparing the SRD results on 1050 × 1050 grid

and mapped grid results on 1250 × 1250 grid at 𝑡 = 1.4. We see that SRD is less diffusive even on

a slightly lower resolution that the mapped grid example. This can be seen in the finer details in

both the reflected side (where the reflected waves cross in the center) and also the overtopped side,

in the appearance of more residual overtopped waves.

(a) SRD results at 𝑡 = 1.4. (b) Mapped grid results at 𝑡 = 1.4.

Figure 6.33: Comparison between SRD (1050 × 1050) and mapped grid (1250 × 1250) results.

We also compare our V barrier SRD results with the finite width thin barrier simulation on

GEOCLAW , refined to 1200× 1200 grid, i.e. Δ𝑥 ≈ 0.0009 thick barrier and observe a convergence

order of 1.3 as shown in Fig. 6.35.

6.2.4 Conservation

Finally, we show numerical conservation of our method by doing a V barrier example that

contains water on one side of the barrier as in Fig. 6.24. This time we measure the conservation of
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𝐿1 Error 𝐿∞ Error
Δ𝑥 𝑁𝑥 , 𝑁𝑦 Gauge 1,2 Gauge 3,4 Gauge 1,2 Gauge 3,4

4.e-2 25 4.72e-2 1.26e-2 1.09e-2 4.0e-3
2.e-2 50 1.53e-2 3.75e-3 2.50e-3 1.87e-3
1.e-2 100 5.52e-3 1.14e-3 8.90e-4 4.64e-4

.666e-2 150 3.00e-3 5.34e-4 4.78e-4 1.55e-4

.333e-2 300 9.04e-4 1.63e-4 1.40e-4 4.17e-5

.222e-2 450 4.44e-4 1.05e-4 7.84e-5 3.00e-5

.1333-2 750 2.80e-4 1.10e-4 6.89e-5 4.03e-5

.1111-2 1050 1.87e-4 9.16e-5 6.28e-5 4.34e-5

Table 6.2: 𝐿1 and 𝐿∞ errors computed as difference between mapped and SRD at gauge points 1,2
located at (0.25,0.6) and (0.75,0.6) and points 3,4 located at (0.25,0.3) and (0.75,0.3).

(a) 𝐿1 error order around 1.6. (b) 𝐿∞ error order around 1.2 to 1.4.

Figure 6.34: Convergence plots of SRD against mapped grid (1250×1250). The kink at the end is
due to the similarity in resolution between the reference and the cut cell solution.

Figure 6.35: 𝐿1 convergence of gauge profiles compared to GEOCLAW results on 1200×1200 grid
(right) Order of around 1.34 is observed.
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momentum:

𝜇𝑇 =
∑︁
𝑖, 𝑗

𝛼𝑖, 𝑗𝑄𝑥 (𝑖, 𝑗),

where 𝑄𝑥 (𝑖, 𝑗) denotes the 𝑥-momentum at cell 𝑄𝑖, 𝑗 and 𝛼𝑖, 𝑗 denote the areas of cell 𝑄𝑖, 𝑗 .

Note that there is a data structural aspect to calculating total momentum mass in our 2D prob-

lems. Because we keep two arrays of solutions, one array containing 𝑄𝐿
𝑖, 𝑗

and another containing

𝑄𝑅
𝑖, 𝑗

, we need to bookeep which array to use to calculate the total mass. This is in addition to the

fact that the array of 𝛼𝑖, 𝑗 for the cut cells is not ordered in the same way as the 𝑄 arrays. Further-

more, there is a computational geometric aspect to the conservation calculation as well. Because

our algorithm for cut cells’ geometric calculation is accurate to 1e-6, our conservation accuracy

will also bottom out at 1e-6 (comparable to magnitudes reported in literature [44]). To work around

this, we solve the dam break reflection only problem as Fig. 6.24 on smaller scale problem with

6 × 6 grid, where we exactly know the cut cell areas. Also, since our problem starts with 𝜇𝑇 = 0,

we get the relative total difference by dividing by the average of the numerical total momentum

𝜇̄𝑇 . We see that the momentum difference fluctuates around -4e-15 (Fig. 6.36).

Figure 6.36: Relative momentum difference across time
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Chapter 7: Cell Merging

Cell merging is the simplest out of all the methods discussed to deal with small cut cells. It

simply combines the cut cell with a nearby larger cell, to result in a cell that satisfies𝑉𝑖 > 0.5Δ𝑥Δ𝑦.

Then the method treats the combined cell as a single unit, and updates the cell, using this final

update average to update both the small component cell and larger component cell.

7.1 Numerical method on cut cells: cell merging

Again, as seen in Fig. 6.2 we consider the same types of cut cells, where the cut happens only

once in a grid cell. In this section, first we discuss how the cell merging method works. Then

we describe how the fluctuation at the barrier cut edge is computed in both first and second order.

Then we discuss how the rest of the cut cell edges are computed in both first and second order.

7.1.1 Cell merging

Cell merging works by absorbing a small cell into a larger neighboring cell, and considering

the larger combined cell as its own cell. This way, the CFL limitation on the small cell is avoided,

as the combined cell will be large enough to take a full time step with the numerical update.

The first step in the cell merging method is to identify which cells need merging. We set the

area threshold to be at 0.5Δ𝑥Δ𝑦, such that any cell whose area is less than this threshold is a cell

that needs to be merged. Second, we need to identify the neighboring cell with which to merge the

small cell. In all cases, the neighboring cell will be the normal neighboring cell. For our problems,

this means the cell directly above the small cell (for small cells above barrier) or directly below the

small cell (for small cells below the barrier) as shown in Fig. 7.1. The merged cell will then have

a volume weighted average 𝑄̄ of the comprising cells 𝑄1 and 𝑄2, or 𝑄̄ = 𝑉1𝑄1 +𝑉2𝑄2.
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𝑗

𝑗 − 1

𝑖

𝑗 − 1

𝑗

𝑖𝑖 − 1

Figure 7.1: On the left, we show upper merged cell for cell (𝑖, 𝑗 − 1) and lower merged cell for cell
(𝑖, 𝑗) and on the right, we show the same for 𝑉 barrier example for cells (𝑖 − 1, 𝑗 − 1) and (𝑖, 𝑗 − 1)
and for cells (𝑖 − 1, 𝑗) and (𝑖, 𝑗). Note how the shared edge does not show to highlight merging.

The third step is to update the merged cell. We adopt the style of using every outer edge as

done in [45] to update our merged cells. This not only gives a conservative method but gives

greater accuracy as we do not average the fluctuation over a larger combined edge of a merged

cell. The only edge that does not play a role in updating the merged cell is the edge between the

merging cells, as the merging essentially makes the two into one.

We describe how to compute the fluctuation at each edge of the cut cells in the next subsections.

Note that if we use a first order fluctuation at each edge, we get a first order cell merging method.

If we use a second order fluctuation at each edge, we get a second order cell merging method. That

is, cell merging is simply a way to circumvent the CFL restriction and relies on the underlying

computational method for fluctuation calculations to become either a low resolution method or a

high one.

Final step is to use the updated merged cell to update both the small cell and the merged

neighboring cell. If 𝑄𝑛+1
𝑀

is the updated merged cell average resulting from merging cells (𝑖, 𝑗)

and (𝑖, 𝑗 + 1), then we have 𝑄𝑛+1
𝑖, 𝑗

= 𝑄𝑛+1
𝑀

= 𝑄𝑛+1
𝑖, 𝑗+1. This is also because the cell merging method

considers the merged cell as one big cell.

7.1.2 At barrier edges

Unlike SRD, cell merging is a co-processing method that requires calculations during the nu-

merical update. In particular, the fluctuations at each edge of the merged cell need to be computed
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in order to update the merged cell. First we discuss how the fluctuation is computed at the barrier

edge.

First order

To compute the fluctuation at the barrier edges, we use cell averages on either side of the cut

𝑄
𝐿/𝑈
𝑖, 𝑗

and apply the rotated WR.

These fluctuation waves are then weighted by the length of the barrier cut edge, as shown in

Fig. 7.2. Note that as shown in Fig. 7.2, we may need to compute fluctuations at two barrier edges

to update a single merged cell because we use every piecewise edge of merged cells.

𝑗

𝑖

ℓ5A±Δ𝑄̆𝑖, 𝑗 ℓ6A±Δ𝑄̆𝑖, 𝑗+1

𝑄̆𝐿
𝑖, 𝑗

𝑄̆𝑈
𝑖, 𝑗

𝑄̆𝐿
𝑖, 𝑗+1

𝑄̆𝑈
𝑖, 𝑗+1

Figure 7.2: The rotated averages 𝑄̆𝑈/𝐿
𝑖, 𝑗

and 𝑄̆𝑈/𝐿
𝑖, 𝑗+1 are used to produce waves at the barrier edges

of cut cell (𝑖, 𝑗) and cell (𝑖, 𝑗 + 1) (with lengths ℓ5, ℓ6) to update the merged cells in blue and red.
The red merging is for upper cell (𝑖, 𝑗) and blue for lower cell (𝑖, 𝑗 + 1).

Second order

To perform second order methods, we also need to compute gradients ∇𝑄𝑖, 𝑗 to do linear ap-

proximations. We use the gradients to approximate the solution values at cell edge midpoints at the

barrier. In order to compute ∇𝑄𝑖, 𝑗 we use the least square gradient reconstruction method (LSQ).

To use LSQ, we compute (1) each midpoint of the cut cell grid edge (𝑥𝑒, 𝑦𝑒), (2) centroid of the cut

cell (𝑥𝑖, 𝑦𝑖), and (3) displacement matrix Δr{𝑆𝑖, 𝑗 } to their neighboring cell centroids (four/five-point

stencil 𝑆𝑖, 𝑗 in Fig. 7.3). We pre-compute these information for each grid, and use them to do least
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square fitting on the following equation:

𝑄{𝑆𝑖, 𝑗 } −𝑄𝑖, 𝑗 = Δr{𝑆𝑖, 𝑗 }∇𝑄𝑖, 𝑗 , (7.1)

where {𝑆𝑖, 𝑗 } makes up the stencil for (𝑖, 𝑗) with |{𝑆𝑖, 𝑗 : 𝑆1, ..., 𝑆𝑛}| = 𝑛,

𝑄{𝑆𝑖, 𝑗 } −𝑄𝑖, 𝑗 =


𝑄𝑆𝑖 −𝑄𝑖, 𝑗

...

𝑄𝑆𝑛 −𝑄𝑖, 𝑗


and dimension thus being 𝑛 × 3, and

Δr{𝑆𝑖, 𝑗 } =


(𝑥𝑆𝑖 − 𝑥𝑖), (𝑦𝑆𝑖 − 𝑦 𝑗 )

...

(𝑥𝑆𝑛 − 𝑥𝑖), (𝑦𝑆𝑛 − 𝑦 𝑗 )


with dimension 𝑛 × 2, the entries (𝑥𝑖, 𝑦 𝑗 ) being the centroid of cell (𝑖, 𝑗) and (𝑥𝑆𝑖 , 𝑦𝑆𝑖 ) being the

centroid of cell neighboring 𝑆𝑖, and finally

∇𝑄𝑖, 𝑗 =

ℎ𝑥 , (ℎ𝑢)𝑥 , (ℎ𝑣)𝑥

ℎ𝑦, (ℎ𝑢)𝑦, (ℎ𝑣)𝑦

 (𝑖, 𝑗) ,
being the 2 × 3 matrix form of the approximation of the gradient at (𝑖, 𝑗).

With the gradient ∇𝑄𝑖, 𝑗 computed we can ‘walk’ from the centroid (𝑥𝑖, 𝑦 𝑗 ) to the cell grid

edges (𝑥𝑒, 𝑦𝑒) to get 𝑄𝑒
𝑖, 𝑗

= 𝑄𝑖, 𝑗 + ∇𝑄𝑇
𝑖, 𝑗
(𝑥𝑒 − 𝑥𝑖, 𝑦𝑒 − 𝑦𝑖). We use this gradient calculation only at

the barrier edge and elsewhere we use second order wave propagation method. This is to reduce

expensive gradient computation and sources of possible numerical instability [10]. Also, we resort

to using gradient approximations on the barrier edge, since it is not clear what 𝐼 = 𝑖 + 1 or 𝑖 − 1 in

Eq. (3.25) should indicate, while using gradients makes it clear that we should linearly approximate

the solution at the midpoint of the barrier edge and compute the Riemann problem there.
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To approximate the gradient, we use the following stencils depending on which cut cell we are

approximating the gradient for. There are three types of stencils we use, as shown in Fig. 7.3. In

the diagram we focus on the upper cut cells at the center. However, the same principle applies to

the lower cut cells and also the cut cells with barrier of slope 𝑚 > 1. We use the regular five point

stencil with the exception of cells that the barrier blocks the central cell from accessing.

Figure 7.3: Stencils used for approximating gradients on different types of cut cells. The cut cell
of interest is the upper cut cells at the center.

To limit the gradients we use the Barth-Jespersen limiter. This limiter has the advantage of

keeping the gradients low such that the reconstructed value at the barrier edge will always be in

between the maximum and minimum values over the stencil. This assures nice properties such as

positivity for the height variable, given everywhere else height is positive. Also, it avoids oscilla-

tions by not introducing new maxima.

The Barth-Jespersen limiter 𝛼 is computed by taking the minimum of 𝛼𝑆𝑘 , where 𝑆𝑘 is a mem-

ber of stencil 𝑆𝑖, 𝑗 = {𝑆𝑘 }:

𝛼 = min{𝛼𝑆𝑘 }, (7.2)

97



where

𝛼𝑆𝑘 =



min(1, (𝑀𝑖, 𝑗 −𝑄𝑛𝑖, 𝑗 )/(𝑄𝑛𝑆𝑘 −𝑄
𝑛
𝑖, 𝑗
)) if 𝑄𝑛

𝑆𝑘
−𝑄𝑛

𝑖, 𝑗
> 0

min(1, (𝑚𝑖, 𝑗 −𝑄𝑛𝑖, 𝑗 )/(𝑄𝑛𝑆𝑘 −𝑄
𝑛
𝑖, 𝑗
)) if 𝑄𝑛

𝑆𝑘
−𝑄𝑛

𝑖, 𝑗
< 0

1 if 𝑄𝑛
𝑆𝑘

−𝑄𝑛
𝑖, 𝑗

= 0,

(7.3)

where 𝑀𝑖, 𝑗 denotes the maximum solution value over stencil and 𝑚𝑖, 𝑗 the minimum. We simply

multiply the limiter to ∇𝑄𝑛
𝑖, 𝑗

to give ∇𝑄̃𝑛
𝑖, 𝑗

= 𝛼∇𝑄𝑛
𝑖, 𝑗

. Note that since our 𝑄 ∈ R3, we apply the

limiter to each variable in 𝑄 (i.e. ℎ, ℎ𝑢, ℎ𝑣).

With the limited gradients calculated on either side of the cut, we compute the linearly recon-

structed value 𝑄 at the barrier edge from both sides and apply rotated wave redistribution on those

values as described in Chapter 4.

7.1.3 At non-barrier edges

At every other edge, which are the vertical and horizontal edges of the cut cell, we employ

the base method as described in Section 3.3.2 with two caveats: weighting of fluctuation waves as

done in SRD and choice of waves for limiting at the cut cell non-barrier edges.

First order

In the first order, the A±Δ𝑄𝑖−1/2, 𝑗 and B±Δ𝑄𝑖, 𝑗−1/2 are computed exactly in the same way as

described in Chapter 3. Because of the shorter length of the cut cell edges, however, we need to

weight the fluctuations that arise by the length of the cut cell edge to Δ𝑥 [46], just as was done with

the fluctuation at the barrier edges. This is the first caveat and shown diagrammatically in Fig. 7.4.
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𝑗

𝑖

ℓ1

ℓ2
ℓ3

ℓ4

ℓ1A+Δ𝑄𝐿
𝑖−1/2, 𝑗

ℓ2A−Δ𝑄𝐿
𝑖+1/2, 𝑗+1

ℓ4A−Δ𝑄𝑈
𝑖+1/2, 𝑗+1

ℓ3A+Δ𝑄𝑈
𝑖−1/2, 𝑗

Figure 7.4: The length (𝑙𝑖) weighted waves on cut edges used to update merged cell for upper cut
cell (𝑖, 𝑗) in red and for lower cut cell (𝑖, 𝑗 +1) in blue. The fluctuations are also computed as usual
at the uncut edges (e.g. bottom edge and right edge of cell (𝑖, 𝑗) for the blue merged cell).

All in all, the general update formula for a lower cut cell in first order will look as follows:

𝑄
𝐿,𝑛+1
𝑖, 𝑗

=
(𝛼𝐿
𝑖, 𝑗
𝑄
𝐿,𝑛
𝑖, 𝑗

+ 𝛼𝐿
𝑖, 𝑗+1𝑄

𝐿,𝑛

𝑖, 𝑗+1)
𝛼𝐿
𝑖, 𝑗

+ 𝛼𝐿
𝑖, 𝑗+1

− Δ𝑡

𝛼𝐿
𝑖, 𝑗

+ 𝛼𝐿
𝑖, 𝑗+1

(ℓ𝑖, 𝑗A+Δ𝑄𝑖, 𝑗 + ℓ𝑖, 𝑗+1A+Δ𝑄𝑖, 𝑗+1

+ ℓ𝐿
𝑖−1/2, 𝑗A

+Δ𝑄𝐿
𝑖−1/2, 𝑗 + ℓ

𝐿
𝑖+1/2, 𝑗A

−Δ𝑄𝐿
𝑖+1/2, 𝑗

+ ℓ𝐿
𝑖+1/2, 𝑗+1A

−Δ𝑄𝐿
𝑖+1/2, 𝑗+1 + ℓ

𝐿
𝑖, 𝑗−1/2B

+Δ𝑄𝐿
𝑖, 𝑗−1/2), (7.4)

where 𝛼𝑈/𝐿
𝑖, 𝑗

, ℓ𝑖, 𝑗 denote the area of cut cell and the length of the barrier edge, and ℓ𝑈/𝐿
𝑖±1/2, 𝑗 and

ℓ
𝑈/𝐿
𝑖, 𝑗±1/2 represent the lengths of the vertical and horizontal edges of the cut cell, respectively, as

done in Fig. 6.7. The first term in this update formula is the merged cell average and the rest are

net fluctuation. Note that now since 𝛼𝐿
𝑖, 𝑗

+ 𝛼𝐿
𝑖, 𝑗+1 > 0.5Δ𝑥Δ𝑦, we do not run into CFL restriction.

Upper cut cells are updated in a similar manner.

Second order

In second order, waves and limited wave corrections are also computed as described in Sec-

tion 3.3.2 and weighted by ℓ𝑖. However, the second caveat is in computing second order correction
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in the non-barrier cut cell edges. This is because some cut cells do not have a right or left edge,

due to the barrier completely blocking it, when information from the right or left edge is necessary

to perform limiting (the index 𝐼 in Section 3.3.3). An example of such scenario is depicted in

Fig. 7.5. The upper cut cell only has two non-barrier edges, marked by two red ×’s. Note how they

do not have naturally adjacent edges both forward and backward to perform wave limiting. In such

cases, we use the wave and speed that arise from the barrier (denoted by the overlapping vertical

and horizontal double-ended arrows in the right figure) to correct the fluctuations at the left and

top edge. The wave and speed from the barrier is first computed normal to the barrier then rotated

back to 𝑥 and 𝑦 direction.

𝑗

𝑖

Figure 7.5: Barrier is blocking access from the upper cut cell (𝑖, 𝑗) to its right and bottom neigh-
boring cell, when speed and wave information from Riemann problems there (crossed in blue) are
required to perform limiting.

7.2 Model problems

Here we only consider the overtopping examples, as they are our main interest in barrier mod-

eling. All the model problems presented below have the same conditions as those shown in SRD,

with steady water height of ℎ = 1.2 and a dam jump of Δℎ = 0.8, giving the overall height of

the dam break to be ℎ = 2.0. The barrier height ℓ is chosen to be ℓ = 1.5. For the boundary

conditions, we have one extrapolation boundary condition on the overtopping side, such that the

wave can exit the domain after overtopping the barrier. Furthermore, these computations are done

using the second order method, with the Barth Jespersen limiter for gradient at the cut edge and
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minmod limiter at Cartesian edges. The difference between these results and SRD results is that

these examples are all run using the second order CM method, and have much higher resolution

with 900 × 900 grid.

As before, we run simulations with the same initial condition with a mapped grid suited for

each barrier and observe the 2D color contour plots of water height at specific times from both the

CM cut cell method and mapped example runs. Also we observe gauge data, marked by an asterisk

with a number in the figures below. We compare our results only against the numerical solutions

computed on mapped grids, as we have already seen the behavior of GEOCLAW simulations earlier.

7.2.1 The 20◦ angled barrier

The results show very close match between CM results and mapped results. We place two

gauges, one at (0.5, 0.39) as before and another at (0.5, 0.8) to both capture the reflection and also

the overtopped wave further away from the barrier.

Case of Overtopping

We show the initial condition in Fig. 7.6.

Figure 7.6: Initial condition for overtopping case: ℓ = 1.5. Dam height is 2.0. Grid is 900 × 900.

We observe from both CM results and mapped grid results that the wave is abated from the

barrier and proceeds in the same direction after overtopping (Fig. 7.7). The reflection wave on the

lower side of the barrier is gliding up the linear barrier, while reflecting back in normal direction

to the barrier at the same time.
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(a) CM (b) Mapped grid

Figure 7.7: Linear barrier example at 𝑡 = 0.3: CM on left and mapped grid on right.

At 𝑡 = 0.7, the overtopped wave almost exits the domain at the upper boundary. On the lower

side of the barrier, the reflected waves are bouncing around the wall boundary conditions, having

reflected from the bottom boundary (the lower left radial wave upward) and from the barrier corner

(the upper right radial wave downward).

(a) CM (b) Mapped grid

Figure 7.8: Solution at 𝑡 = 0.7.

An interesting observation to be made is at 𝑡 = 1.4, the doubly-reflected wave (from barrier and

bottom edge) overtops again at the upper right, and its “double-tongued” shape is nicely captured

in both CM and mapped grid results.

Comparison to mapped grid

The way to validate our simulations is again by comparing them against a mapped grid exam-

ple, as shown on the right column in (Fig. 7.7-Fig. 7.9). The mapped grid is shown in Fig. 6.17.

We transform the computational uniform grid (𝑥, 𝑦) into a skewed grid 𝑓𝐿 (𝑥, 𝑦), with the following

mapping 𝑓𝐿 , as done previously in SRD examples.
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(a) CM (b) Mapped grid

Figure 7.9: Solution at 𝑡 = 1.4

A remark about this mapping is that it is a linear and affine transformation that stretches and

squeezes the upper and lower halves of the computational domain into the physical grid as shown in

Fig. 6.17. We implement wave redistribution at the computational barrier edge (𝑦 = 𝑦∗). The finite

volume method for mapped grids is explained in [10] and is very much similar to the rotational

part of the wave redistribution method explained in Section 6.1.5.

We observe the gauge results between the CM and the mapped examples in Fig. 7.10 and see

a very good comparison. The gauge results of the mapped example are from a run on 900 × 900

grid, and the results of the CM example are also from a 900 × 900 grid.

(a) Time profile of Gauge 1 (0.5, 0.8). (b) Time profile of Gauge 2 (0.5, 0.39).

Figure 7.10: Gauge comparisons between CM and mapped grid. Results from 900 × 900 for CM
and from 900 × 900 for mapped grid.

Convergence

For convergence studies we observe the convergence of the wave height profile at each gauge

point. A note on the usage of gauge results for convergence is that as our studies are for developing
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models for protective strategies against storms, we focus not on the numerical results at a slice of

the spatial domain at a fixed time, but rather on a slice of the temporal domain at a fixed spatial

point in the grid. This is often done in storm simulations, to test the storm models’ accuracy against

real results collected at a specified gauge point off a coast (e.g. surge measurement at Battery Park,

NYC).

𝐿1 Error (1st) 𝐿1 Error (2nd)
Δ𝑥 𝑁𝑥 , 𝑁𝑦 Gauge 1 Gauge 2 Gauge 1 Gauge 2

4.e-2 25 1.03e-2 2.45e-2 8.95e-3 1.37e-2
2.e-2 50 3.21e-3 (3.18) 1.13e-2 (2.16) 2.57e-3 (3.20) 4.28e-3 (3.48)
1.e-2 100 9.20e-4 (3.49) 4.02e-3 (2.81) 7.27e-4 (4.00) 1.07e-3 (3.54)

0.666e-2 150 4.13e-4 (2.23) 2.22e-3 (1.80) 3.36e-4 (1.49) 7.17e-4 (2.16)
0.5e-2 200 2.56e-4 (1.61) 1.25e-3 (1.77) 1.62e-4 (1.84) 3.88e-4 (2.08)

Table 7.1: 𝐿1 errors at Gauge 1 (0.5,0.8) and Gauge 2 (0.5,0.39).

Also we only study the convergence of the overtopped examples, for similar reasons as above-

mentioned, namely, that in realistic scenarios the barriers will be overtopped by incoming waves.

For our standard solution to compare against, we use the mapped grid example, on a 900 × 900

grid. Then we take the heights at time intervals {0.0, 0.1, ... 1.4} and compare the CM and mapped

results.

Figure 7.11: Convergence of gauge profiles using 𝐿1 norm.

Shown in Table 7.1 are the 𝐿1 normed errors for the overtopped wave profile. We also have the

convergence plot in Fig. 7.11. We observe that the gauge 2 seems to converge little more slowly,
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especially in the first order method. We attribute this to the fact that it is nearer to the barrier, where

the cut cells are. However, in the second order method, gauge 2 performs just as well as gauge 1,

because of the gradient reconstruction at the edges and limiting. We also show the 𝐿∞ error norm

and observe similar convergence (see Table 7.2 and Fig. 7.12):

𝐿∞ Error (1st) 𝐿∞ Error (2nd)
Δ𝑥 𝑁𝑥 , 𝑁𝑦 Gauge 1 Gauge 2 Gauge 1 Gauge 2

4.e-2 25 7.00e-3 4.35e-2 5.57e-3 2.87e-3
2.e-2 50 2.04e-3 (3.41) 1.93e-3(2.25) 8.86e-4 (6.29) 8.35e-4 (3.44)
1.e-2 100 5.03e-4 (4.06) 8.13e-4 (2.38) 2.56e-4 (3.45) 3.03e-4 (2.75)

0.666e-2 150 2.18e-4 (2.31) 4.93e-4 (1.65) 1.37e-4 (1.87) 1.40e-4 (2.16)
0.5e-2 200 1.30e-4 (1.67) 2.99e-4(1.64) 5.51e-5 (2.48) 1.04e-4 (1.34)

Table 7.2: 𝐿∞ errors at Gauge 1 (0.5,0.8) and Gauge 2 (0.5,0.39).

Figure 7.12: Convergence of gauge profiles using 𝐿∞ norm.

Comparison between SRD and CM

We can now compare the results of CM with those of SRD at the same resolution we use in

this chapter Δ𝑥 = 1/900. We compare the gauge results and observe that they are almost identical

as can be seen in Fig. 7.13 and Fig. 7.14. These comparisons show that both give comparable

accuracy with the same resolution, meaning that all things being equal (order of method, grid

setup, etc.) either method gives a viable solution to our problem. The 2D contour plot of the two
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(a) Gauges 1: overtopped wave (b) Gauges 2: reflected wave

Figure 7.13: The gauge results of the overtopping linear barrier problem between SRD and CM.

methods also show approximately same behavior. Here we plot the final time of the linear barrier

example at Δ𝑥 = 1/900.

(a) SRD (b) CM

Figure 7.14: Comparison of SRD with CM in first order at Δ𝑥 = 1/900.

We show the gauge results of all three methods, SRD, CM and mapped grid, in Fig. 7.15 and

observe their good agreement.

7.2.2 The V Barrier

Again we run our algorithm on the V barrier model problem, with gauge points on either side

of the barrier, to test reflection and overtopping, and on either side of the domain, to test symmetry.

We observe good comparison and convergence between CM and mapped grid results.
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(a) Overtopping gauge (b) Reflecting gauge

Figure 7.15: Gauge results for linear barrier problem on 900×900

Case of Overtopping

Again we have water height as 1.2 and the dam jump to be 0.8 to achieve total dam height of

2.0. As we shall see, this is enough height to overtop the barrier of height 1.5. We do a comparison

against mapped grid results to show accuracy of our CM results. From Fig. 7.17 to Fig. 7.19,

we can see the similarities of the two 2D plots. At time 𝑡 = 0.3, we see the overtopping wave’s

“wing"-like structure just below the V-barrier where the amplitude is highest. In Fig. 7.18, we see

the overtopping wave moving radially outward from the center, shown both in the CM and mapped

grid results. Finally in Fig. 7.19 we see the small islands of wave amplitude at the bottom center

of the plot in both results.

Figure 7.16: Initial condition for overtopping case: ℓ = 1.5. Dam height is 2.0. Grid is 900 × 900
for CM and 1000 × 1000 for mapped grid.

We place our gauges at either side of the V-barrier (0.25, 0.3), (0.75, 0.3), (0.25, 0.6), (0.75, 0.6)

in order to test for symmetry in the results. Indeed we do find symmetry as can be seen in the iden-
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(a) CM (b) Mapped grid

Figure 7.17: CM Comparison with mapped grid at 𝑡 = 0.3. Note the structure of the just overtopped
wave.

(a) CM (b) Mapped grid

Figure 7.18: CM Comparison with mapped grid at 𝑡 = 0.7. Note the radially outward moving wave
from the center of the V-barrier.

(a) CM (b) Mapped grid

Figure 7.19: CM Comparison with mapped grid at 𝑡 = 1.4. Note the “island" of peak at the bottom
center.

tial plots of the gauge results in Fig. 7.20.
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(a) Time profile of Gauge 1 (0.25, 0.6). (b) Time profile of Gauge 2 (0.75, 0.6).

(c) Time profile of Gauge 3 (0.25, 0.3). (d) Time profile of Gauge 4 (0.75, 0.3).

Figure 7.20: Gauge profiles compared with mapped grid results: 900×900 for CM and 1000×1000
for mapped grid.

7.2.3 Comparison to mapped grid

The mapped grid for the V barrier is shown in Fig. 6.31. Again we transform the computational

uniform grid into a chevron grid akin to what is done in [7], with mapping 𝑓𝑉 as used before.

The mesh size is chosen such that the barrier in the computational domain lies exactly on

𝑦 = 𝑦∗. Transforming the grid with this mapping, using the mapped grid finite volume method

explained in Section 6.1.5 and [10, 27], and applying wave redistribution at the computational

barrier edge will give us the numerical solution to the exact same problem that we solve in the

Cartesian coordinates using CM cut cell method.

Convergence

In Fig. 7.20 we plot the gauge results of 1000 × 1000 mapped grid V-barrier example and

900 × 900 CM example. We do see that the CM results contain more fine movements of the wave
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and that the mapped grid example produces more smooth wave patterns, implying slight difference

in the rate of convergence between the CM method and mapped grid method. Overall, nonetheless,

we see convergence as shown in Table 7.3. The order of convergence are around 2 for the second

order method and 1.6 for the first order method for both gauge points (Fig. 7.21).

We note that CM resolves more detail even on a slightly lower resolution than the mapped grid

example. This can be seen in the finer details in both the reflected side (where the reflected waves

cross in the center) and also the overtopped side, in the appearance of more residual overtopped

waves (Fig. 7.19).

𝐿1 Error (1st) 𝐿1 Error (2nd)
Δ𝑥 𝑁𝑥 , 𝑁𝑦 Gauge 1,2 Gauge 3,4 Gauge 1,2 Gauge 3,4

4.e-2 25 4.83e-2 9.86e-3 4.16e-2 8.07e-3
2.e-2 50 1.58e-2 (3.06) 3.32e-3(2.97) 8.55e-3(4.87) 2.27e-3 (3.56)
1.e-2 100 5.70e-3 (2.77) 1.01e-3 (3.30) 2.28e-3 (3.74) 5.12e-4 (4.42)

0.666e-2 150 3.04e-3 (1.88) 4.51e-4 (2.23) 1.05e-3 (2.17) 2.33e-4 (2.20)
0.5e-2 200 1.83e-3 (1.66) 2.53e-4(1.78) 5.14e-4 (2.05) 1.54e-4 (1.52)

Table 7.3: 𝐿1 errors at Gauges 1,2 (0.25,0.6), (0.75,0.6) and Gauges 3,4 (0.25,0.3), (0.75,0.3).

Figure 7.21: Convergence of gauge profiles in 𝐿1 norm.

In the V barrier example we also compute the 𝐿∞ error and observe similar results, as seen in

the linear example (Table 7.4):

We can see from Fig. 7.22 similar behavior in the orders of convergence in 𝐿∞:

110



𝐿∞ Error (1st) 𝐿∞ Error (2nd)
Δ𝑥 𝑁𝑥 , 𝑁𝑦 Gauge 1,2 Gauge 3,4 Gauge 1,2 Gauge 3,4

4.e-2 25 1.01e-2 3.69e-3 1.06e-2 2.95e-3
2.e-2 50 2.66e-3 (3.79) 1.86e-3 (1.98) 2.02e-3 (5.23) 8.49e-4 (3.47)
1.e-2 100 1.02e-3 (2.60) 4.44e-4 (4.18) 4.57e-4 (4.42) 1.26e-4 (6.74)

0.666e-2 150 5.54e-4 (1.84) 1.35e-4 (3.29) 1.93e-4 (2.36) 6.90e-5 (1.82)
0.5e-2 200 2.82e-4 (1.96) 4.65e-5 (2.90) 1.19e-4 (1.62) 4.53e-5 (1.52)

Table 7.4: 𝐿∞ errors at Gauges (0.25,0.6), (0.75,0.6) and Gauges (0.25,0.3), (0.75,0.3).

Figure 7.22: Convergence of gauge profiles using 𝐿∞ norm.

7.2.4 Conservation

In Fig. 7.23, we again check numerical conservation of our CM method by doing a V barrier

example that contains water on one side of the barrier as in Fig. 6.24, measuring total momentum

𝜇𝑇 as defined in Eq. (7.1). The total momentum relative difference is centered around zero and

fluctuates with variance of around 1e-14. Although the error is of order 10−14 compared to 10−15

in the SRD method, the CM method keeps total momentum more centered around zero than the

SRD method, which had relative difference centered around -4e-15.

Comparison between SRD and CM

We can again further compare the results using SRD and CM. We compare them in the same

resolutions with grid of 900 × 900. Results show that they are almost identical, as can be seen in

the gauge results (Fig. 7.24).
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Figure 7.23: Relative momentum difference across time.

(a) Gauges 3,4: overtopped wave (b) Gauges 1,2: reflected wave

Figure 7.24: The gauge results of the overtopping V problem between SRD and CM.

Furthermore, the 2D contour plot at the final time step (𝑡 = 1.4) is close to identical, with SRD

showing a little more symmetry than CM (Fig. 7.25): The overtopped wave at the bottom appears

(a) SRD (b) CM

Figure 7.25: Contour plots of overtopping V problem between SRD and CM at Δ𝑥 = 1/900.

more clearly in both cut cell methods than the mapped grid results. We also show the comparison

between SRD, CM and mapped grid methods for the gauge results in Fig. 7.26 and observe good
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agreement.

(a) Overtopping gauge (b) Reflecting gauge

Figure 7.26: Gauge results for V barrier problem on 900×900 for cut cell methods and 1000×1000
for mapped grid.

7.3 Computational Superiority to Refinement using GEOCLAW

To highlight the computational superiority of using the CM method on the zero width barrier,

we again do a V-barrier simulation on GEOCLAW using same resolution as CM but adaptive (dou-

ble) refinement at the barrier. This means that GEOCLAW has more resolution (2X) at the barrier

than the CM example.

We show results from using resolution Δ𝑥 = 1/300, 1/450. The relaxed timesteps and reduced

number of timesteps show the computational benefit we derive from our proposed method. For

Δ𝑥 = 1/300 we observe that we get 184% increase in the minimum Δ𝑡 (from 8.6e-06 to 2.4e-05)

and 162 % increase in the average Δ𝑡 (from 0.00028 to 0.00074) and about fivefold decrease in the

number of steps taken (9958 steps to 2037 steps). For Δ𝑥 = 1/450, we observe that we get fivefold

increase in the minimum Δ𝑡 (from 2.9e-06 to 1.9e-05) and 175 % increase in the average Δ𝑡 (from

0.00018 to 0.00049) and about fivefold decrease in the number of steps taken (15861 steps to 3082

steps). We do note, however, that there may be different reasons for using GEOCLAW ’s adaptive

mesh refinement versus using a zero-width approximation, e.g. to get much finer detail near the

barrier region.
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Chapter 8: Realistic Numerical Examples

Finally we present realistic barrier examples including bathymetric variation. On all our ex-

amples here, we resort to CM method to emphasize the experimental value and simulation results

more than the method used. SRD methods also work on the same examples. First we will show a

Gaussian shaped island being protected by the two types of barriers. Then we will show a normal-

ized bathymetry of South Carolina (SC) being protected by a linear barrier and actual bathymetry

of NYC being protected by a linear barrier. The sea surface level is set at -0.8 for all problems. For

the Gaussian island and SC problems, we set 𝑔 = 1 for illustrative purpose. (In a sense, one can

think of even 𝑔 = 1 case as being ‘physical’ since the spatial dimension is being scaled by 9.8m,

meaning unit of 1 in these examples correspond to 9.8m). For NYC, we set 𝑔 = 9.8𝑚/𝑠2 for a

realistic simulation. The only additional algorithmic aspect that needs further discussion in these

examples is wetting and drying methods.

8.1 Drying and Wetting algorithm

One of the main issue with drying and wetting is that on a dry region, there is no water, which

means we can no longer use the usual eigenvalues for our wave speeds. In fact, the water and dry

interface moves at a much faster speed than a wave in an all wet region. The speed of a wave

inundating a dry region is given by 𝑠 = 𝑢̂ ± 2
√︁
𝑔ℎ̄ (with Roe or Einfeldt average 𝑢̂ and arithmetic

average ℎ̄) as opposed to 𝑠 = 𝑢̂±
√︁
𝑔ℎ̄ for a wave in a wet region. This is calculated using Riemann

invariants [30]. Thus, higher speed means greater CFL restriction, as the CFL number will be high.

To compensate for this, we need to take shorter Δ𝑡 (recall CFL = 𝑠Δ𝑡/Δ𝑥).

Although we use a Riemann problem solver that handle wetting and drying situations [30],

practice shows that the solver is not as robust as desired when there is a lot of inundation and
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recession of waves on dry bathymetry all happening simultaneously. These are cases where the

rarefaction waves have both positive and negative speeds and are called transonic rarefactions [10],

which are another source of numerical challenge. Our solver can give negative updates in such

cases. There are, however, many methods that deal with this issue [47]. We employ the relatively

simple method described in [48] where negatively updated state cells (due to the Riemann problem

at water-ground interface) are zeroed out. Adding this fix stabilizes the solver.

8.2 Gaussian island

Here we do two experiments that will potentially comment on design aspects of a storm barrier

in addition to the effectiveness of barriers in general. To compare the effectiveness of the linear

barrier versus the V barrier, we add an island on the other side of the barrier and observe flooding

at the island center. We will compare the gauge results without a barrier and with a barrier and

observe how much protection each barrier type provides.

The Gaussian island is defined as follows:

𝑏(𝑥, 𝑦) =

ℎmax exp(−(𝑥 − 𝑥0)2 − (𝑦 − 𝑦0)2), for 𝑑 ((𝑥, 𝑦), (𝑥0, 𝑦0)) < 𝑟2

−2 otherwise.
(8.1)

The boundary conditions are such that there is a wall boundary condition on the side of the wave

and extrapolation condition on the side of the island, to allow for wave to exit after hitting the

island. Furthermore, for sake of comparison, the V barrier designed to be mirror images of the

upper half of the linear barrier. The initial conditions are ℓ = 1.5, dam height ℎ𝑑 of 1.7 with base

height ℎ = 1.2, and island peak height and radius of ℎmax = 1.3 and 𝑟 = 0.1. We provide 2D

contour plots of the surface height, which will show the island being inundated. The contour of

the island has a grey hue with the shape of a smaller circle inside. This indicates a dry state. When

this grey circle changes color to become pinkish, inundation has occurred.
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(a) Initial (b) First collision against barrier

(c) First inundation of island: observe
the center of the island.

(d) Receding and wave leaving do-
main behind island

Figure 8.1: Four time snapshots of barrier action protecting an island. Grid 100 × 100.

8.2.1 Linear barrier

For the linear barrier, we can see from the snapshots in Fig. 8.1 that the waves glide along

the barrier and bounce around in the enclosed side of the barrier, while transmitting some of the

wave in the direction of the dam break. Inundation starts around 𝑡 = 0.6. The reflected wave is

redirected to a direction parallel to the barrier. We observe that for the linear barrier, inundation

is about 0.003. Without the barrier, the inundation becomes around 0.09, implying that the barrier

protects the island from about 96% of the peak inundation (Fig. 8.2a).

8.2.2 V barrier

We do the same experiment using the V barrier (Fig. 8.3). When it comes to inundation at the

island, the V barrier actually does worse. This is because as the water gathers towards the center
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(a) Linear barrier vs no barrier: 96% protection. (b) V barrier vs no barrier: 84% protection.

Figure 8.2: Effectiveness of each barrier measured by gauge results at peak of island. V barrier
collects water to the center to cause a greater overtopping effect.

from either end, it gains momentum and ‘dumps’ all the water in the direction of the island. The

mitigated inundation is 0.014, or about 84% protection (Fig. 8.2b). We conclude that the linear

barrier does better in protecting against inundation (Fig. 8.4). However, the V barrier plots show

perhaps more controlled behavior when acting against the wave due to symmetry.

The controlled behavior of the waves in the V barrier could be a merit to consider in barrier

design, however, since it directs the incoming wave toward each other toward the center, instead

of directing it all in one direction as the linear barrier does. If, for example, there were another

island at one end of the linear barrier, the waves could reach there. The V barrier avoids this by

aggregating the wave toward the center and evenly distributing out the reflected waves.

8.3 Myrtle Beach, SC

The following two experiments are akin to work done in [49], where storm protective measures

are analyzed on multiple coasts. To run a more realistic example, we test case our model on real

bathymetric data and choose the coast off South Carolina as a simple example. The geography of

this region suits our purposes as we can naturally place a linear barrier just off the coast (Fig. 8.5).

There is a nice curvature of bathymetry that can be protected by a slanted barrier.
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(a) Initial (b) First collision against barrier

(c) First inundation of island indi-
cated by pinkish patch

(d) Receding waves evenly being
spread out

Figure 8.3: Four time snapshots of barrier action protecting an island. Grid 100 × 100.

Figure 8.4: Linear barrier vs V barrier: about 78% more protection in linear barrier. V barrier ac-
tually gathers the water towards the center, causing a greater overtopping effect than linear barrier.

We take a NetCDF bathymetric data from GEBCO [50], a publicly available bathymetric data

source, and normalize the depths and heights as a way of preprocessing the data for our model.
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(a) Raw bathymetric data (b) Processed bathymetric data

Figure 8.5: GEBCO bathymetric data from -79◦ to −78◦ and 33◦ to 34◦. Normalization using mean
and standard deviation is used to scale the raw physical heights and depths.

We also flatten the ocean floor. This processing eases analysis of the protective effectiveness of the

barrier, as widely varying bathymetry levels sometimes make it difficult to know where to exactly

look for inundation.

Once we normalize the bathymetry, we flatten the ocean bed where the barrier will lie, in order

to have a uniform barrier height above water surface. The bathymetry at the flat bottom is set as

two standard deviations below the mean 𝑏 = −2. The barrier is placed as seen in Fig. 8.6. Finally

we interpolate using linear interpolation to fit the bathymetric data to our own grid.

To highlight the effectiveness of the barrier, we run a dam break scenario with jump height of

0.5 from 𝑦 = 0 to 𝑦 = 0.1 as seen in Fig. 8.7 and with base height of 1.2.

We then plot a zoomed in region and show the height of water in this region, as it includes an

initially dry area that resembles the shape of Florida (see Fig. 8.8). Shown in dark purple is the dry

region, where the underlying elevated bathymetry is what is keeping the region dry.

At time 𝑡 = 0.5, we can see clearly the greatest difference between having a barrier and not

having a barrier. Along the inland delta, we can see significant flooding in the case of no barrier

shown in Fig. 8.9a, compared to the case of barrier shown in Fig. 8.9b.

Also, we can compare the overall domain at initial time and final time to see the effect of the

barrier as shown in Figs. 8.10a and 8.10b. We can see that with the barrier, the region behind
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Figure 8.6: Bathymetry with zero width slanted barrier off the bay: ℓ = 1.5. White star is the
gauge point.

Figure 8.7: Dam break on South Carolina Bay: Δℎ = 0.5, Δ𝑥 = 1/200. Surface height is being
plotted, 𝜂 = ℎ + 𝑏, with 𝜂𝑠𝑒𝑎 = −0.8. Barrier height is then ℓ = 𝜂𝑠𝑒𝑎 − 𝑏𝑚𝑖𝑛 + 0.3.

the barrier island (inner bay located in region [0.1, 0.4] × [0.5, 0.6]) does not see surge, whereas

without the barrier it gets flooded.

Finally, we can compare gauge results at a point (0.5, 0.58) asterisked in Fig. 8.6 and shown

in Fig. 8.11. We see that by introducing the barrier, we reduce not only the height of the wave, but

also its width, or the time duration of the wave. The barrier also introduces new smaller ripples

due to its reflection of waves, as seen near 𝑡 = 1.0.
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Figure 8.8: Zoomed in region. The blue region highlights where there is no water (ℎ = 0) and
green region sea surface level (reverse coloring code to highlight inundation).

(a) No barrier (b) With barrier

Figure 8.9: Inland delta region flooding.

8.4 New York City

Finally, we provide our most physical simulation, with the gravitational constant 𝑔 = 9.8 and

the bathymetry of NYC region being mostly unprocessed (Fig. 8.12). The only processing done

on the real bathymetric data is to rotate the data slightly and flatten the bottom ocean floor so that

we can place our barrier on level surface. We zoom in towards the lower Manhattan and nearby

bay region using cubic interpolation to fit to our 200 × 800 grid and perform our simulation. The

degrees are turned into distances in 𝑘𝑚, with the lower left corner being set at (0, 0), the distance
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(a) No barrier (b) With barrier

Figure 8.10: Overall difference between barrier and no barrier. The time steps have some discrep-
ancy between the two as the algorithm did not output exact times due to high CFL restrictions in
the drying and wetting regions.

Figure 8.11: Gauge results: blue line showing results with barrier, orange showing without. About
93% protection.

in 𝑥 direction is 6 km and in the 𝑦 direction, 24 km. This gives us a resolution of 6/200 km or a 30

m ×30 m cell.

As the units of our spatial dimension are in 𝑘𝑚, the ocean floor is also set at -35/1000 km,

which is the lowest point in the raw bathymetry. We set the dam break jump to be 2.5 meters,

which starts from 𝑦 = 0.0 to 𝑦 = 0.6. Admittedly, this is a big dam break, but to highlight the

effect of barrier we initialize as such. The barrier height ℓ is set at 1.8 meters above the sea surface

located at points (0,1.5) to (6,2.9).

At the barrier, we observe clear abatement of the wave as shown in Fig. 8.13. Just below the tip
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(a) Raw bathymetric data (b) Bottom-flattened, rotated (35◦), and zoomed

Figure 8.12: GEBCO bathymetric data over NYC. Left: the raw data with bathymetry given in
meters and spatial dimension in latitude/longitude. Right: negative bathymetries flattened using
the minimum point; depth and space turned into kilometers; and grid rotated to allow placement of
barrier.

(a) No barrier (b) With barrier 1.8 m above sea surface

Figure 8.13: Dam break simulation over lower Manhattan region with Δℎ = 2.5𝑚 and Δ𝑥 =

30𝑚 = Δ𝑦. Surface height above sea level (0.0) is shown in km. The reduction in wave height in
the overtopped wave can be clearly seen. Black asterisk indicates gauge point.

of lower Manhattan, we check the two results by comparing the gauge heights. We put our gauge

out in the water, instead of on land, because the realistic bathymetry makes it difficult to find a

point in space where we can observe the state going from dry to wet, whereas choosing such a

point in the normalized bathymetric studies was relatively straightforward. Our gauge results show

about 1.246 m reduction or about 90.9% blockage (Fig. 8.14), which is more than a simple naive
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estimate of 1.8/2.5 = 72%. The curve is also flattened, showing a delaying effect of the barrier on

the wave:

Figure 8.14: Comparison of gauge point off lower Manhattan (2.5,7.0).

We can see how in the no barrier case, the wave almost engulfs Governor’s Island while bounc-

ing off from Brooklyn coast (Fig. 8.15) at 𝑡 = 39.6𝑠. However, with the barrier, there is a just slight

hump of wave (in light blue) below Governor’s Island.
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(a) No barrier

(b) With barrier 1.8 m above sea surface

Figure 8.15: Note the difference in waves of two results at the small island (Governor’s Island) off
lower Manhattan.
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Conclusion

Summary of Contributions

In this thesis we have come up with three numerical methods to solve zero width barrier prob-

lems in 1D and 2D shallow water equations with varying bathymetry. We tested our methods on

two 2D model problems, the linear and V barriers.

For ℎ-box method we were able to only do the slanted, wall-like barrier problem in which only

reflection was observed. This was because it was not feasible to find ℎ-box averages that crossed

the barrier, which would be required to apply flux-canceling updates to the cut cells. Furthermore,

because of ambiguity in ℎ-box updates in the V barrier case (at the tip), ℎ-box method was not

suitable to treat such cases. However, we found an alternative simpler grid ℎ-box method that

worked on reflection-only cases which did not require finding all possible ℎ-boxes, as done in the

original 2D ℎ-box method.

For the state redistribution and cell merging methods we were able to forego using ℎ-box like

averages to compute barrier fluctuation and therefore able to treat the more complicated V barrier

problem.

To validate our results on the model problem we compared them with mapped grid results,

which only used wave redistribution at the barrier edge. We observed greater than one order of

convergence on all model results, and second order convergence in the second order cell merging

method. We were able to come up with second order cell merging method using a hybrid of wave

propagation second order correction terms and gradient approximating and limiting at the barrier
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edge.

Finally for realistic example, we computed a wave running up against linear and V barriers in

front of a Gaussian island. Also we were able to download real life bathymetric data from GEBCO

and run realistic tsunami-like scenarios to observe the effect of the barrier on downscaled South

Carolina coast bathymetry and real-scaled New York City.

Besides the cut cell methods, the new contributions of this thesis are summarized below:

• development of 2D wave redistribution

• computation of mapped grid solutions to barrier problems

• implementation of drying-wetting solver in PYCLAW

• development of hybrid second order correction using gradient and wave limiting

• use of real (scaled) bathymetric data to compute simulations in PYCLAW

• Python-Fortran module that automates cut-cell data generation given barrier

Comparison of the methods

As a way of concluding the thesis, we also compare the three numerical methods, their strengths

and drawbacks. We provide a table summarizing our comparison of the three methods in Table 8.1.

Method Algorithm Description Cases Implemented Δ𝑡𝑎𝑣𝑔 factor

HB
Lot of complex geometri-
cal calculations (3) only RF, linear 2.0

SRD
simple to implement but
non-intuitive (2) both OT and RF, linear and V 5.6

CM
most straightforward to
implement (1) both OT and RF, linear and V 5.2

Table 8.1: RF: reflection, OT: overtopping. Comparisons across all three methods. Ranking is
provided for algorithm simplicity, with 1 being the simplest, and for computational savings, ‘Δ𝑡𝑎𝑣𝑔
factor’ shows the ratio of Δ𝑡𝑎𝑣𝑔 of cut cell method and GEOCLAW .
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We note that SRD provided the most computational savings in terms of timesteps saved, with

CM coming in second and ℎ-box (HB) coming in at last. This is most likely due to the extra stabi-

lization added from the SRD’s overlapping neighborhood averaging. HB only has the stabilization

from extending one mesh length from the cut cell edge. However, we note that cell merging is

much simpler conceptually than SRD and HB. HB method, in addition to being complex with

much geometrical computations, does not handle overtopping barrier examples and is not suitable

for zero width barrier simulations. SRD and CM both handle reflection and overtopping scenarios.

A side comment on comparison between SRD and CM [12] is that in 3D, SRD has the clear ad-

vantage over CM because overlapping neighborhoods are allowed, which allows for more flexible

neighborhood search in the higher dimension. CM has to find unique, non overlapping neighbor-

hoods. However, in our 2D cases, no such (dis)advantage appears between SRD and CM. The

modeling advantage is that in SRD, the cells in the neighborhood are treated distinctly for the final

update, whereas in CM they are merged as the name implies. This inherently brings in more diffu-

sion in CM, although such difference is not noticeable in our examples. On the other hand, SRD

technically does have slightly higher computational complexity than CM, as it requires the extra

calculation of using overlap counts for the final update, whereas CM only requires one calcula-

tion of neighborhood averaging. This is not contradictory to the ranking of computational savings

shown in Table 8.1, as by computational savings we mean how much relaxation of CFL condition

each method provides.

Engineering conclusions

From our Gaussian island scenario with both the linear and V barrier, there is a design aspect

to consider. Given the same height, the shape of the barrier does affect wave height reduced; the

linear barrier pushes aside the incoming wave along the direction of the barrier laterally, whereas

the V barrier gathers the water to the center and creates a larger overtopping effect, as water pinches

up.

On the other hand, the V barrier evenly distributes the wave radially from the tip of the barrier
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to the other side. This means that if there were another flood-risk region toward the end of the

linear barrier, the barrier would push all the water to that region, whereas only the regions behind

the barrier would mostly be protected. This will not be the case with the V barrier due to its even

distribution of both reflected and overtopped wave. Also from our NYC simulation, we found that

a 1.8 𝑚 linear barrier would approximately block about 90% of a 2.5 𝑚 wave.

Future Direction

Our work can be of help in modeling storm barriers if further scaled up to handle geophysical

shallow water equations (e.g. Coriolis force and storm wind model). Furthermore, our algorithms

can be tested in more complicated barrier model problems, such as a circular barrier. There is also

the limitation that the barrier has to be from one end of domain to the other, but one can zoom in

and crop the desired bathymetry such that the barrier would fit in the selected domain. The issue

with completely interior-only barrier is that one has to splice the upper cut cell values and the lower

cut cell values appropriately in different regions of the domain. Furthermore, our model requires

that we have a level surface on which the barrier can stand. A more involved cut cell method using

both bathymetric and surface level interpolation would be required to deal with such cases. To do

more flexible, customizable simulations, it would be required to develop a more general model that

takes a shape of a barrier as input and applies the cut cell method to solve the barrier problems.
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Appendix A: Algorithms for cut cell data

We used Fortran to generate cut cell data. The tasks for cut cell data generation was to (1) find

the index location of the cut cells, (2) find their edge lengths, (3) find their area, and (4) find their

centroids (needed for second order methods.) We provide the pseudocode here; the actual codes

can be found on the author’s GitHub account here.

A.1 Indices

To find indices we do the following:

cut_cell_find:

1. Find slope and angle of barrier using coordinate specification

2. Get intersections between barrier and grid using slope and angle

3. Remove any duplicate intersections due to floating point error

4. Walk along the intersections to determine the index location

The biggest challenge was the floating point error sensitivity, where artificial intersections were

being found ‘between’ a point.

A.2 Edges

To find the edge lengths of each cut cell, we do the following:

coords:

1. Find edge vertices using index location of cut cell

2. Find coordinates of barrier intersections

3. Find respective distances between coordinates
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A.3 Areas

To find area of each cut cell, we do the following:

area_polygon:

1. Find the vertices of the cut cell

2. Order them in counterclockwise fashion

3. Apply the shoelace formula

The Shoelace formula is

𝐴 =
1
2

𝑛−1∑︁
𝑖=0

(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖).

A.4 Centroids

To find centroid of each cut cell, we do the following:

find_centroid:

1. Find vertices of cut cell

2. Order them in counterclockwise fashion

3. Apply centroid formula

The centroid formula is:

𝐶𝑥 =
1

6𝐴

𝑛−1∑︁
𝑖=0

(𝑥𝑖 + 𝑥𝑖+1) (𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝐶𝑦 =
1

6𝐴

𝑛−1∑︁
𝑖=0

(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖).
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Appendix B: Fortran-Python Barrier Module

Using f2py we imported the Fortran library to Python and made an Python object called barrier.

class barrier():

def __init__(self,type,p0,p1):

os.system(’python fortran.py’) # f2py library called CutFind

self.type = type # L or V

self.p0 = p0 # the first coord of barrier

self.p1 = p1 # the second or middle coord

def make(self,mx,my,dx,dy):

if self.type == ’L’:

CutFind.check_aux_cmL(mx,my,self.p0[0],self.p0[1],\

self.p1[0],self.p1[1],dx,dy)

elif self.type = ’V’:

CutFind.check_aux_cmV(mx,my,self.p0[0],self.p0[1],\

self.p1[0],self.p1[1],dx,dy)

else:

raise ValueError(’Type not recognized’)

The object has attributes of type of barrier and the coordinates indicating their location. It also

has a method called ‘make’ which actually runs the Fortran codes to compute the cut cell data,

given grid dimensions. This allows us to do all our computation in PYCLAW (Python).
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