Motivation New Method Summary

1D H-box Method for Shallow Water Equations with zero-width barrier

Chanyang Judah Ryoo

APAM Columbia University

APAM Research Seminar, Feb. 28, 2020

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Problem Setup Previous Work

Why Zero-width barrier?

And the difficulties.

Problem Setup Previous Work

Shallow Water Equations

$$h_t + (hu)_x = 0$$

$$(hu)_t + (\frac{1}{2}gh^2 + hu^2)_x = -\frac{1}{2}ghb_x$$
(1)

Motivation New Method Summary

Problem Setup Previous Work

Why Zero-width barrier?

And the difficulties.

- Small cells: $\alpha \Delta x$, $(1 \alpha) \Delta x$
- No water on top of wall
- Flux

• "Large-time-step" method for wall off edge

Ryoo Non-LTS double h-boxes method

The Idea Main Results

The Idea: H-Box Method

Motivation New Method Summary

The Idea Main Results

The Idea: H-Box Method

$$g_{-1/2} := f_{-1/2}$$
 (2)

$$g_{1/2} := f_{1/2}, \ g_{3/2} := \alpha f_{5/2} + (1 - \alpha) f_{3/2}$$
 (3)

$$g_{-3/2} := f_{-3/2}, \ g_{-5/2} := \alpha f_{-5/2} + (1 - \alpha) f_{-7/2}$$
 (4)

The Idea Main Results

The Idea: H-Box Method

$$u_{0}^{n+1} := Q_{0}^{n+1}, \quad u_{-1}^{n+1} := Q_{-1}^{n+1}$$
(5)
$$u_{1}^{n+1} := \alpha Q_{0}^{n+1} + (1-\alpha)Q_{1}^{n+1}, \quad u_{2}^{n+1} := \alpha Q_{1}^{n+1} + u_{2}^{n+1}$$
(6)
$$u_{-2}^{n+1} := \alpha Q_{-2}^{n+1} + (1-\alpha)Q_{-1}^{n+1}, \quad u_{-3}^{n+1} := (1-\alpha)Q_{-2}^{n+1} + u_{-3}^{n+1}$$
(7)

The Idea Main Results

Riemann Problem

(日) (日) (日) (日) (日) (日) (日)

Motivation New Method Summary

The Idea Main Results

Riemann Problem Solver (D. George 2008)

$$\begin{bmatrix} h_R \\ (hu)_R \\ \phi_R \end{bmatrix} - \begin{bmatrix} h_L \\ (hu)_L \\ \phi_L \end{bmatrix} - \Psi(q_L, q_R) = \begin{bmatrix} 1 & 0 & 1 \\ s_{\epsilon}^1 & 0 & s_{\epsilon}^2 \\ (s_{\epsilon}^1)^2 & 1 & (s_{\epsilon}^2)^2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix},$$

where $\phi = \frac{1}{2}gh^2 + hu^2$, $\Psi(q_L, q_R)$ = source term arising from bathymetric variation, and $s_{\epsilon}^{1,2}$ = two eigenvalues arising from system of SWE, 'speeds'

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ● の Q @

Motivation New Method Summary

The Idea Main Results

Riemann Problem Solver (D. George 2008)

$$\begin{bmatrix} h_R \\ (hu)_R \\ \phi_R \end{bmatrix} - \begin{bmatrix} h_L \\ (hu)_L \\ \phi_L \end{bmatrix} - \Psi(q_L, q_R) = \begin{bmatrix} 1 & 1 & 1 \\ s_{\epsilon}^1 & s_M & s_{\epsilon}^2 \\ (s_{\epsilon}^1)^2 & s_M^2 & (s_{\epsilon}^2)^2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix},$$

where $\phi = \frac{1}{2}gh^2 + hu^2$, $\Psi(q_L, q_R)$ = source term arising from bathymetric variation, and $s_{\epsilon}^{1,2}$, s_M = 'speeds', eigenvalues or their averages/min/max

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ● の Q @

The Idea Main Results

Ghost State at Barrier: Redistribution

Motivation New Method Summary

The Idea Main Results

Ghost State at Barrier: Redistribution

$$b^* = \min(b_L, b_R) + \text{wall height}$$
 (8)
 $h^* = \min(h_L - (b^* - b_L), h_R - (b^* - b_R))$ (9)
 $(hu)^* = \min((hu)_L, (hu)_R)$ (10)

The Idea Main Results

Lake at rest case

The Idea Main Results

Lake at rest case

The Idea Main Results

Inundation case I

The Idea Main Results

Inundation case I

The Idea Main Results

Inundation case I (comparison)

The Idea Main Results

Inundation case I

The Idea Main Results

Inundation case II

The Idea Main Results

Inundation case II

The Idea Main Results

Inundation case II

The Idea Main Results

Overtopping over bathymetry jump

The Idea Main Results

Overtopping over bathymetry jump

The Idea Main Results

Overtopping over bathymetry jump

The Idea Main Results

Overtopping over bathymetry jump

The Idea Main Results

Overtopping over bathymetry jump

The Idea Main Results

Steady state subcritical flow

The Idea Main Results

Steady state subcritical flow

The Idea Main Results

Steady state subcritical flow

The Idea Main Results

Steady state subcritical flow

The Idea Main Results

Steady state subcritical flow

- Mass conservation observed : -7.406 E -16
- Simplified calculation
- Better on dry state conditions
- Outlook
 - Subcritical flow cannot be captured on infinitely thin wall
 - Convergence studies
 - 2D problem

▲□ → ▲ 三 → ▲ 三 → ▲□ → ● ● ●

For Further Reading

R. Leveque

Finite Volume Methods for Hyperbolic Problems. Cambridge Publication, 2002.

D. George.

Augmented Riemann solvers for the SWE over variable topography with steady states and inundation *Journal of Computational Physics*, 227(6), 2008.

<□> < => < => < => < =| = <0 < 0