1D H-box Method for Shallow Water Equations

with zero-width barrier

Chanyang Judah Ryoo

APAM
Columbia University
APAM Research Seminar, Feb. 28, 2020

Why Zero-width barrier?

And the difficulties.

Shallow Water Equations

$$
\begin{array}{r}
h_{t}+(h u)_{x}=0 \\
(h u)_{t}+\left(\frac{1}{2} g h^{2}+h u^{2}\right)_{x}=-\frac{1}{2} g h b_{x} \tag{1}
\end{array}
$$

Why Zero-width barrier?

And the difficulties.

- Small cells: $\alpha \Delta x,(1-\alpha) \Delta x$
- No water on top of wall
- Flux

Previous Work (J. Li 2019)

- Wall on an edge

- "Large-time-step" method for wall off edge

The Idea: H-Box Method

The Idea: H-Box Method

$$
\begin{array}{r}
g_{-1 / 2}:=f_{-1 / 2} \\
g_{1 / 2}:=f_{1 / 2}, \quad g_{3 / 2}:=\alpha f_{5 / 2}+(1-\alpha) f_{3 / 2} \\
g_{-3 / 2}:=f_{-3 / 2}, \quad g_{-5 / 2}:=\alpha f_{-5 / 2}+(1-\alpha) f_{-7 / 2} \tag{4}
\end{array}
$$

The Idea: H-Box Method

$$
\begin{equation*}
u_{0}^{n+1}:=Q_{0}^{n+1}, u_{-1}^{n+1}:=Q_{-1}^{n+1} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
u_{1}^{n+1}:=\alpha Q_{0}^{n+1}+(1-\alpha) Q_{1}^{n+1}, u_{2}^{n+1}:=\alpha Q_{1}^{n+1}+u_{2}^{n+1} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
u_{-2}^{n+1}:=\alpha Q_{-2}^{n+1}+(1-\alpha) Q_{-1}^{n+1}, u_{-3}^{n+1}:=(1-\alpha) Q_{-2}^{n+1}+u_{-3}^{n+1} \tag{7}
\end{equation*}
$$

Riemann Problem

Riemann Problem Solver (D. George 2008)

$$
\left[\begin{array}{c}
h_{R} \\
(h u)_{R} \\
\phi_{R}
\end{array}\right]-\left[\begin{array}{c}
h_{L} \\
(h u)_{L} \\
\phi_{L}
\end{array}\right]-\Psi\left(q_{L}, q_{R}\right)=\left[\begin{array}{ccc}
1 & 0 & 1 \\
s_{\epsilon}^{1} & 0 & s_{\epsilon}^{2} \\
\left(s_{\epsilon}^{1}\right)^{2} & 1 & \left(s_{\epsilon}^{2}\right)^{2}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right],
$$

where $\phi=\frac{1}{2} g h^{2}+h u^{2}$,
$\Psi\left(q_{L}, q_{R}\right)=$ source term arising from bathymetric variation, and $s_{\epsilon}^{1,2}=$ two eigenvalues arising from system of SWE, 'speeds'

Riemann Problem Solver (D. George 2008)

$$
\left[\begin{array}{c}
h_{R} \\
(h u)_{R} \\
\phi_{R}
\end{array}\right]-\left[\begin{array}{c}
h_{L} \\
(h u)_{L} \\
\phi_{L}
\end{array}\right]-\Psi\left(q_{L}, q_{R}\right)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
s_{\epsilon}^{1} & s_{M} & s_{\epsilon}^{2} \\
\left(s_{\epsilon}^{1}\right)^{2} & s_{M}^{2} & \left(s_{\epsilon}^{2}\right)^{2}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right],
$$

where $\phi=\frac{1}{2} g h^{2}+h u^{2}$,
$\Psi\left(q_{L}, q_{R}\right)=$ source term arising from bathymetric variation, and
$s_{\epsilon}^{1,2}, s_{M}=$ 'speeds', eigenvalues or their averages $/ \mathrm{min} / \mathrm{max}$

Ghost State at Barrier: Redistribution

zero-width
ghost-state

Ghost State at Barrier: Redistribution

$$
\begin{array}{r}
b^{*}=\min \left(b_{L}, b_{R}\right)+\text { wall height } \\
h^{*}=\min \left(h_{L}-\left(b^{*}-b_{L}\right), h_{R}-\left(b^{*}-b_{R}\right)\right) \\
(h u)^{*}=\min \left((h u)_{L},(h u)_{R}\right) \tag{10}
\end{array}
$$

Lake at rest case

Lake at rest case

Inundation case I

Ryoo
Non-LTS double h-boxes method

Inundation case I

Inundation case I (comparison)

Inundation case I

Ryoo
Non-LTS double h-boxes method

Inundation case II

Inundation case II

Inundation case II

Ryoo
Non-LTS double h-boxes method

Overtopping over bathymetry jump

Outflow at right

Overtopping over bathymetry jump

Outflow at right

Overtopping over bathymetry jump

Outflow at right

Overtopping over bathymetry jump

Outflow at right

Overtopping over bathymetry jump

Outflow at right

Steady state subcritical flow

Steady state subcritical flow

Steady state subcritical flow

Ryoo
Non-LTS double h-boxes method

Steady state subcritical flow

Steady state subcritical flow

Summary

- Mass conservation observed : -7.406 E-16
- Simplified calculation
- Better on dry state conditions
- Outlook
- Subcritical flow cannot be captured on infinitely thin wall
- Convergence studies
- 2D problem

For Further Reading

\otimes R. Leveque
Finite Volume Methods for Hyperbolic Problems.
Cambridge Publication, 2002.
家
D. George.

Augmented Riemann solvers for the SWE over variable topography with steady states and inundation Journal of Computational Physics, 227(6), 2008.

