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1 Problem Setup

Here (see Fig.1) we have a problem of solving the 1D shallow water equations (SWE) with
a zero-width barrier of height ω that is placed within a grid cell. This creates two small
cells, denoted as u−1 and u0 in the diagram below. In the case when the wall is placed on a
grid edge, Li has come up with a method of redistributing the fluxes which directly updates
the left and right cells of the wall. In the case when the wall is located inside the cell, the
two small cells impose a limit on the time step because of the CFL condition. One way
to circumvent taking many small time steps is to use large time stepping (LTS) method,
which violates the strict CFL condition but tracks the waves from the Riemann problems
throughout the larger-than-allowed time step and updates the small and neighboring cells
appropriately. Li has also implemented this method. However, this LTS method involves
complicated and repeated calculation of time substeps and cell averages. In this work, we
show an h-box approach to circumvent the small cell problem and the cumbersome LTS
method, which reduces to updating “virtual” regular sized grid cells and using these values
to update the small and neighboring cells. In the diagram the shaded grid cells are what
are called h-boxes, which are mixed averages of the small cell with the neighboring cell.
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Figure 1: Zero-width barrier in an arbitrary position
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2 The H-box Method

The method is divided into two parts. The first part is to find a consistent and conservative
way of updating the h-box cells, which are simply the cell averages of their covering physical
cells. The second part is to update the physical cells proportionally according to the
updated h-box cells.

2.1 Fluxes of h-boxes

To find consistent and conservative updates of the h-boxes, we find the fluxes at the h-box
edges based on the fluxes at the physical grid edges in a conservative manner. Note that
all the fluxes at the physical grid edges are all well-defined except at the wall. We will
discuss how to define the flux at the barrier later.
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We must first somehow prescribe two of them (g−1/2, g1/2) to solve for the last third (g3/2).
We set g−1/2 := f−1/2 because they align with each other, and we set g1/2 := f1/2 by
proximity. To find what g3/2 should be, we impose conservation.

To maintain conservation, we must have total mass from the h-box updates to be the
same as the total mass from the standard Godunov updates. That is, we use the following
Godunov updates:

un+1
0 = un0 −

∆t

(1− α)∆x
(f1/2 − f−1/2) (1)

un+1
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which are the right half cells of the barrier for simplicity. The other half cells are treated
in similar manner. The total mass at step n+ 1 given by Qn+1

0 +Qn+1
1 should be given by:

Qn+1
0 +Qn+1
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2
] (4)

or,
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Using equations (1)-(3) (because values of Q0, Q1 depend on them) and g− 1
2

= f− 1
2

gives

us further cancellations:
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2
]− ∆t

∆x
[f 3

2
− f 1

2
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2
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2
] (6)

This gives us:

g 3
2

= αf 5
2

+ (1− α)f 3
2

(7)

Doing similar calculation on the other side of the wall gives us:

g− 5
2

= αf− 5
2

+ (1− α)f− 7
2

(8)

2.2 Wave propagation form

The updates based on differences of fluxes at the edges can be put in terms of updates in
wave propagation form as follows. We use the relation

A−∆Qi−1/2 = gi−1/2 − F (Qi−1) (9)

A+∆Qi−1/2 = F (Qi)− gi−1/2. (10)

and

A−∆ui−1/2 = fi−1/2 − F (ui−1) (11)

A+∆ui−1/2 = F (ui)− fi−1/2 (12)

where F (q) = F ([h, hu]) = [hu, hu2 + 1
2gh

2].

2.3 The flux f−1/2 at barrier: Redistribution

To come up with the positive direction waves and negative direction waves at the infinitely
thin barrier, we must introduce a ghost cell, denoted qw, and solve two Riemann prob-
lems (henceforth abbreviated as RP(qi, qj)), which will be RP(ql, q

w) and RP(qw, qr), and
redistribute the waves arising from these problems (Ph.D. Thesis, Jiao Li). We use the
augmented solver in GeoClaw, which uses three waves to solve a RP and redistribute them.

2.3.1 Setting the ghost state

First it must be noted that there are certain cases where we do not need to introduce a
ghost state and thus solve two RPs:

• The zero-width wall is has zero height:
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• The zero-width wall is shorter than the bathymetry of either side:

The first case is obvious as to why no ghost cell is necessary. In the second case, it is
unnecessary because effectively the thin wall does not affect the flow of water in any way;
it is “hidden” in one of the bathymetry. In this case, the RP with the barrier is solved as
the RP without the barrier.

Now in every other case we need to have a ghost state and introduce two RPs. To
set the ghost state, we reason as follows. In the case of a steady state, with bathymetric
variation, also known as “lake at rest” problem, we need to set the ghost state such that
no waves result in any of the RPs near the barrier. Consider the diagram below:

To achieve this steady state, we note that from the perspective of the left cell, the barrier
appears as the following diagram:

From the perspective of the right cell, the barrier apears as the following diagram:

Therefore, in this lake-at-rest case, we set the ghost state bathymetry, height and momen-
tum to be

b∗ = min(bL, bR) + ω,

h∗ = hR − (b∗ − bR) = hL − (b∗ − bL),

(hu)∗ = 0 (since at rest) (13)

See figure 5. In the case where the heights are both above the wall and equal, but the
momentum differs on either side of the zero-width barrier, we choose

(hu)∗ = min((hu)L, (hu)R). (14)

Now in the case when hL and hR are different, we “upwind” the ghost state, i.e. choose
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q∗

b∗

Figure 2: Ghost state for lake at rest

either qL or qR to determine the height and momentum, with some modification. Without
loss of generality, if the left state has higher water, we set

h∗ = hR − (b∗ − bR) (15)

with b∗ being the same as (13). We call this upwind ghost state because in general when
the water is higher on one side, the wave is moving towards the other side and we are
basing the evaluation of the ghost cell by qR (WLOG). The subtraction of (b∗ − bR) is
due to the “effective” height of the water that the left state sees being on top of the wall.
Effectively the wave from the left “sees” only h∗ and b∗. In other words, our ghost height
is

h∗ = min(hL − (b∗ − bL), hR − (b∗ − bR)). (16)

In pictures,

becomes as figure 3. Now for our ghost momentum, we choose as (14):

(hu)∗ = min((hu)L, (hu)R).

We choose the minimum of the momentum as this reduces variation (oscillation) in the
numerical solution to subcritical flow problems. For example, in the case of differing
momentum on either side of and with equal heights above the single-cell width wall (that
is tall enough), the actual solution has a dip (i.e. actual oscillation) at the wall. By setting
the ghost state momentum to have the minimum momentum, we reduce the variation in the
numerical solution of the zero-width wall case. What we mean by reducing the variation
is that there is still variation over the domain that permeates from the barrier in the zero-
width case, as the numerical solution cannot express the dip as a single cell value and has
to locate the dip on either side of the barrier. See section 2.3.3.

In other cases, which are cases where water only flows from one side to the other or
not at all, we introduce a dry ghost state and must solve two RPs that generally look like
figure 4. This is again based on the fact that if there are not water above the barrier on
both sides, either side “sees” no water in the other side.
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Figure 3: Ghost state for general case of waters higher than barrier

q∗ = 0

b∗

Figure 4: Ghost state for general case of barrier higher than water on either side

2.3.2 Redistributing waves

Using the augmented solver complicates the algebra of redistributing fluxes, as now there
are in total 6 variables to work with (three for each problem) in order to solve the problem:

[r1, r2, r3, r4, r5, r6]β = [ρ1, 0, 0, 0, ρ2, ρ3]β̃

where the six ri are the 6 eigenvectors arising from the two RPs, and the three ρi are the
3 chosen eigenvectors to which all the fluxes will be redistributed. Theoretically one must
solve for β̃ exactly in order to solve for the ghost state. However, we can still obtain good
results with the setup explained above.

Now we must choose three vectors to which the fluxes arising from the two RPs will be
redistributed. We select three speeds: (1) s̄1, the average of the two 1-wave speeds, (2) s̄2,
the average of two 2-wave speeds, and (3) s̄3, the average of the two 3-wave speeds. This
averaging of the two speeds is recommended also for various reasons (Ph.D. Thesis, David
George, 84-85). The speed then determines our three eigenvectors since the eigenvector
is of the form [1, s, s2]. Now in using the augmented solver, there is another linearly
degenerate eigenvector of the form [0, 0, 1]. We use the form of [1, s, s2] for all the speeds if
there are water overtopping the wall from both sides, since this will help us to accurately
capture large rarefactions, if any, and also ensure positivity (George). Otherwise, we only
use the maximum and minimum speeds as our eigenvectors, and one linearly degenerate
wave in the augmented solver [0, 0, 1] as our third eigenvector. In matrix equation form,
the redistribution of waves solves 1 1 1

s̄1 s̄2 s̄3
s̄21 s̄22 s̄23

β1β2
β3

 =


∑2

j=1 ∆h∑2
j=1 ∆(hu)∑2
j=1 ∆φ

 (17)
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when water overtops from both sides, or 1 0 1
s̄1 0 s̄3
s̄21 1 s̄23

β1β2
β3

 =


∑2

j=1 ∆h∑2
j=1 ∆(hu)∑2
j=1 ∆φ

 (18)

when water overtops only from one side (or does not at all). Here ∆h is the height
difference between the physical and ghost states, ∆(hu) the momentum difference, and
∆φ the momentum flux difference. The second matrix reduces to Jiao Li’s redistribution
using two waves. The left going or right going wave is then determined by the signs of the
speeds.

2.3.3 Subcritical flow

For subcritical flows, i.e. where there will be a “dip” on the wall in the single cell-width
problem and the wall is maxi bi, we note that the inherent nature of the setup of the zero-
width wall problem makes it incompatible to capture the variation. This is because the
wall has zero width and cannot hold water on top of it, which means the dip has to appear
on either side of the wall. However, if the bathymetry is flat on either side of the wall,
this is hard to realize. The only way to address this issue is to ‘erase’ the dip. That is,
in the redistribution of the waves from the ghost RPs, we use only the waves propagating
outward from the wall ghost state. Doing this reduces to using two waves solver for the
redistribution. In this way, the state on the left and the right of the barrier will only reflect
the left and right state of the dip and thus look more or less flat. An example in the
numerical results will show this.

3 Numerical Results

We have five simulations to show. In four cases, the red dots are results of GeoClaw solver
with the barrier being represented by jump in bathymetry (bj = b∗), and the black line is
the h-box method result with zero-width barrier. There are 400 uniform grid cells from
x = 0 to 1 for the simulation in red (∆x = 0.0025), and there are 399 uniform grid cells
(∆x = 0.002506) with one being split into two small cells with α = 0.1 and 1 − α = 0.9
by the barrier for the simulation in black (thus 400 in total). The differences in results
are due to the flux approximation error inherent in the h-box method, the discrepancy in
the two grids’ alignment and the fact that the infinitely thin barrier is compared to finite
length barrier (0.0025).

The first simulation is the classical “lake at rest” problem, which tests the numerical
conservation of the scheme in the presence of a step in bathymetry fig. 5. We also provide
the difference in mass from initial time to show numerical conservation in fig. 6. The second
two simulations are dry state problems (inundation), one with flat bottom and other sloping
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Figure 5: Lake at rest at time t = 0.7, with ∆xred = 0.0025, ∆xblack = 0.002506 and
α = 0.1 for all plots

bottom. The other two are cases with all wet states, one with step bathymetry jump and
other a non-zero velocity steady state problem. See figures 5 - 23.

4 Conclusion

4.1 Benefits compared to LTS or using single-cell width wall

The benefits of using the proposed double h-box method are four-fold. First, it circumvents
using the cumbersome and complicated large-time-step (LTS) method that needs to track
waves crossing the small cells introduced by the barrier placed within a cell. Li proposed
this method for the 1D shallow water equation with zero-width barrier in his thesis. Also,
this method has potential of being scaled up to 2D, whereas LTS will become impractical
in two dimensions.

The second benefit is that we do not need to refine the barrier to be a bathymetry jump
with a single cell width. This is beneficial because one of the problems in storm simulation
is to simulate storm-protection barriers or obstacles that are much smaller compared to
scale of the landscape. Because of this high refinement must be applied around the barrier,
which is costly. However, with a zero-width barrier, we do not need to refine any walls,
because we are approximating physical barriers with a zero-width, immovable wall.

The third benefit is shown in the numerical conservation of mass that is easily kept in
the double h-box method. Although the LTS method is theoretically mass-conserving, it
is often hard to show numerically that is the case. However, in our double h-box method,
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Figure 6: Mass change for lake at rest problem

Figure 7: Flat bathymetry inundation at time t = 0.0
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Figure 8: Flat bathymetry inundation at time t = 0.35

Figure 9: Flat bathymetry inundation at time t = 0.35, with old solver
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Figure 10: Flat bathymetry inundation at time t = 0.7. Notice the gap in the distance
between the wave on the RHS of wall. This gap reduces as we refine the grid.

Figure 11: Sloping bathymetry inundation at time t = 0.0, with short wall.
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Figure 12: Sloping bathymetry inundation at time t = 0.245

Figure 13: Sloping bathymetry inundation at time t = 0.7
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Figure 14: Step bathymetry with right-moving wave at time t = 0.0 and outflowing right
BC

Figure 15: Step bathymetry with right moving wave at time t = 0.14
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Figure 16: Step bathymetry with right moving wave at time t = 0.28

Figure 17: Step bathymetry with right moving wave at time t = 0.42
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Figure 18: Step bathymetry with right moving wave at time t = 0.7

Figure 19: Subcritical flow with constant velocity 0.4 at left BC and outflowing right BC
at time t = 0.0
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Figure 20: Subcritical flow at time t = 0.07. Note the absence of dip in black line.

Figure 21: Subcritical flow at time t = 0.21
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Figure 22: Subcritical flow at time t = 0.35.

Figure 23: Subcritical flow at time t = 1.4.
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mass is conserved to machine-precision.
The last benefit is the method’s better handling of dry-state problems due to the

implementation of the augmented solver [D. George, 2008]. Alhough this solver is more
costly, figure 8 and figure 9 show the large difference in the results.

4.2 Summary

In conclusion, we have come up with an h-box method that uses two h-boxes around the
zero-width barrier, that uses augmented SWE riemann solver of GeoClaw, that is simpler
than the LTS method and that conserves mass. Various cases have been checked, with flat
bathymetry and varying bathymetry and with dry states and wet states, and with nonzero
steady states. The only limitation in the 1D method and also expected in the 2D method
is the inability to capture subcritical flow over the wall, due to the inherent nature of the
problem i.e. how there can be no water on top of the inifinitely thin wall.
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