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Abstract

We study inference problems of one-dimensional complete random sequential ad-
sorption (RSA) on a finite interval I with periodic boundary conditions, also called
random parking. The problems involve estimating the relative order of arrival of two
cars and the relative order of arrival of two groups of cars. Using the likelihood of
each possible arrival history of the whole set of cars, we make probabilistic predictions
that infer the correct relative orders significantly better than purely random guessing
(50%). This improvement from 50% increases with the size of the interval I. We also
form methods of deterministic prediction using geometry of the RSA, mainly the gap
size surrounding each car, and observe correct inference higher than 50% that also
increases as the system size increases. Additionally, we theoretically derive the first
two moments of the random variable Γ(ct), which is the size of the surrounding gap
that a car parking at time t will have on an infinite line, and confirm the derivation of
the first moment via simulations.
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1 Introduction

1.1 What is Random Sequential Adsorption?

Random sequential adsorption (RSA) is a stochastic process of irreversibly placing finitely
sized n-dimensional objects (e.g. line, square, circle) uniformly on a n-dimensional region
(bounded or unbounded) in order such that no overlap occurs with any of the previously
placed objects. Such model appears in biology and physical chemistry, for instance, when
one needs to study the adsorption of bacteria on a surface, or when one desires to produce
chemically active substrates by depositing particles on a surface, as studied by Feder [1]
and Katira et. al. [2]. Feder showed that the iron storage protein ferritin adsorbs on carbon
surface as disks would on 2D plane according to RSA, while Katira showed how proteins
adsorb according to RSA to a surface functionalized with polyethylene oxide to create a
chemically active surface. These are examples of 2D RSA, for which exact analytical results
have not been found as in the case of 1D RSA (further discussed in next section). Studies
have been done on the three dimesional case as well, modelling how spheroidal particles
would adsorb onto a surface according to RSA [3]. Similar to 2D RSA, only results from
simulations and theoretical approximations have been made in 3D RSA. In another more
down-to-earth case, RSA has been modified to model the parking behavior of cars in streets
of London by Rawal and Rodgers [4]. For this research, we focus on the one dimensional case,
where an interval (‘car’) of length l adsorbs (‘parks’) itself on a circular interval of radius
ρ until no more car can park (called complete RSA). Henceforth, we shall call the case of
such random sequential adsorption ‘RP’, standing for ‘Random Parking.’ Symbolically, we
have that R(l,ρ), a realization of RP which we simulate via code, lies in D ⊂ [0, 2π]N , a
subset of N element vectors denoting all possible configuration of random parking, where
N is the random number of cars. Although N is random, it must fall within the range
{Nmin =

⌈
πρ
l

⌉
,
⌈
πρ
l

⌉
+ 1, ...,

⌊
2πρ
l

⌋
= Nmax}. The one-dimensional case was the first RSA

model to be studied by a Hungarian mathematician named Alfred Renyi who started to
derive analytical results, some of which we present in the next section.

1.1.1 Analytical results in 1D RSA

Some previous analytical results on infinite street RP (RP∞) include asymptotic analysis
by Alfred Renyi [5], the formulation of the density of gap size with respect to time, the
density of street covered with cars with respect to time, and the density of street available
for parking with respect to time [7]. Renyi proved that if unit length cars are randomly
parked on a linear street of size x, then the ratio of mean number of cars parked on street
and the length x approaches a limit as x→∞:

lim
x→∞

M(x)

x
=

∫ ∞
0

exp
(
− 2

∫ x

0

1− e−y

y
dy
)
dx = 0.74759...

Also, there is an analytical expression of the population density of gap lengths as a function
of time for RP∞. This function G(h, t) can be derived as a solution to an integro-differential
equation that describes the dynamics of RP:

∂G(h, t)

∂(kat)
= −H(h− l)(h− l)G(h, t) + 2

∫ ∞
h+l

G(s, t)ds,
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where H(x) = 1x>0 is the unit step function, ka is the constant rate of cars entering the
street, h the gap length, and l the length of car. The left hand term of the RHS describes
the rate of destruction of gaps of size h via insertion of car in a gap of size h, and the right
hand term describes the creation of gaps of size h via parking of cars in a gap of size greater
than or equal to h+ l. The solution to this differential equation is divided into two cases, 1)
for h ∈ (0, l) and 2) for h > l:

1)G(h, t) =
2

l2

∫ kalt

0

u exp(−uh/l) exp
(
− 2

∫ u

0

1− e−s

s
ds
)
du

2)G(h, t) =
(kalt)

2

l2
exp

(
− 2

∫ kalt

0

1− e−u

u
du
)

exp(−ka(h− l)t).

We present a plot in Figure 1 of this gap density function for l = 1 and ka = 1 and for
different times t. We observe more and more mass concentrating near h = 0 because as time
progresses, more cars have parked near one another.
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Figure 1: G(h, t) is plotted for t = 0.1, 1, 2, 3, 4, 5, for h ∈ [0, 10]. We see that as t increases
the density of gaps with size near 0 increases, while the density of gaps with size h far from
0 decreases.

Now with G(h, t) one can find several other functions. First, the density of the infinite line
covered by cars ρ(t) is derived as

ρ(t) =

∫ ∞
0

G(h, t)dh,

as each gap of any size h is adjacent to a car, and the integral from 0 to ∞ gives the total
density of cars on the line. We can also find the density of line available for parking Φ(t)
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by noting that for a given gap of size h, the available space it has is h − l with which we
discount the density of gap size h:

Φ(t) =

∫ ∞
l

(h− l)G(h, t)dh

=
(kalt)

2

l2
exp

(
− 2

∫ kalt

0

1− e−u

u
du
) ∫ ∞

l

(h− l)e−ka(h−l)tdh

=
(kalt)

2

l2
exp

(
− 2

∫ kalt

0

1− e−u

u
du
) ∫ ∞

0

se−kastds

= exp
(
−2

∫ kalt

0

1− e−u

u
du
)
.

We know that Φ(t) → 0 as t → ∞, because the density of cars on street ρ(t) satisfies the
differential equation

dρ(t)

dt
= kaΦ(t),

and ρ(t)→ limx→∞
M(x)
x

as t→∞, the Renyi’s constant.

1.2 Parameters and Likelihood

Note that R(l,ρ) (or RP(l,ρ)) is a finite sequence of some N angles, which we can describe as
a pair (r, σ), where r is the set of angles of cars’ positions, and σ ∈ SN is a permutation on
r that describes the order in which they entered the street. Its probability density function,
pR, depends on (r, σ) through the following relation:

pR(r;σ) =
1

2πρ

N∏
i=2

1

Ã(rσi)
, (1)

where Ã(rσi) is the length of the circumference available for the ith car to park after cars
1, 2, ...(i− 1) have parked (according to σ). For example, Ã(rσ2) will be the space available
for the second car (the angle in r with assigned order 2) to park, so it will be (2πρ − 2l),
as small intervals of length l

2
on both ends of a car are also unavailable for parking to avoid

overlap.
Now if we are only given r and no σ, we can find the likelihood of each possible σ ∈ SN .
Likelihood of a parametergiven an outcome L(σ; r) is the probability of the outcome given
the parameter i.e. Eq. 2, where we order r by σ and compute (1):

L(σ; r) =
1

2πρ

N∏
i=2

1

Ã(rσi)
. (2)

Thus the important parameter of estimation is σ ∈ SN , the arrival history.
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1.3 Inference Problem

There can be different inference problems posed with the RSA model. For instance, Lieshout
posed and estimated the problem of inferring car length and parking duration from a given
‘core parking’ (position of just the center of cars), using maximum likelihood [10]. Now
the question we pose is if we can gain information given r, a realization of complete RP,
about the permutation of true arrival order σ∗, such as whether one element of r arrived
earlier than another element, using the knowledge of the likelihood function. For small N ,
it is possible to observe several things. We can calculate L for all possible σ ∈ SN and
find argmaxσ L(σ; r), for instance. We can also measure informativeness of the likelihood
function on σ∗ by normalizing the function and treating it as a distribution to measure the
Kullback-Leibler divergence (relative entropy) against other distributions. Note that the

normalized likelihood (NLD), which we denote as P(1)(σ; r) = L(σ;r)∑
σ L(σ;r)

, can be treated as

a distribution because it is an update of some prior distribution P(1)(σ) before observing
sample r by Bayes’ rule [6]:

P(1)(σ; r) = P(1)(σ)× P(1)(r;σ)

P(1)(r)
.

Thus, if we set P(1)(σ) to be uniform since we assume that we do not know
any information about the parameter σ before observation of any sample, then
we retrieve the normalized likelihood function, since P(1)(σ) = 1/|SN | and
P(1)(r) =

∑
σ P(1)(r;σ)P(1)(σ) = P(1)(σ)

∑
σ P(1)(r;σ), where P(1)(r;σ) = L(σ; r) as in

Eq. 2. Most importantly, we will take the partial sums of likelihoods corresponding to
subsets of SN to answer inference problems about σ∗. Finally, we would want to answer
similar problems for l

ρ
small (i.e. N large).

2 Simulation and computations

2.1 RP simulation

There is a straight-forward way of simulating a RP on the computer, which replicates
the exact procedure of the model. Namely, one can repeatedly generate uniform random
variable over [0, 2π], and reject if an overlap occurs or accept if not. This poses a problem
of computational time for RP on large streets, since as more and more cars park, less and
less space will be available on the street and the computer must generate a lot of uniform
numbers to access the remaining small spaces for a complete parking. In order to circumvent
this problem, we concentrate the uniform numbers to be only generated over the available
gaps, with respect to their relative sizes. The algorithm is as follows and implemented in
MATLAB.

(I) Optimized algorithm of simulation of R(l,ρ):
1) Let i = 1. Park car θi ∼ U(0, 2π), a uniform random variable from [0, 2π]
2) Let gaps = 2πρ− l
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3) While max(gaps) > l
Let Ij be [θj − l

ρ
, θj + l

ρ
]mod 2π for j = 1, ...i

Let S = [0, 2π]− ∪jIj and decompose S = ∪jSj, where {Sj} is open and disjoint
Let dj = |Sj|
Let K ∼ U(0,

∑
j dj) where the interval (0,

∑
j dj) is partitioned by [0, d1], [d1, d1 +

d2], ..., [d1 + ...+ di−1, d1 + ...+ di]
Let j′ denote the partition on which K fell
Let α ∼ U(Sj′)
Let i = i+ 1 and park car θi = α
Let gaps = gap({θj}ij=1) (see algorithm below for gap)

(II) Algorithm of finding gaps:
1) Sort in increasing order the existing angles θj, call θ′

2) Shift each index of θ′ by +1, call φ (for the last index, we shift it to the first index)
3) Add 2π to last element of φ
4) Let ∆ = φ− θ′
5) Let gaps = ρ∆− l, where l = [l, l, ..., l], whose number of elements equals that of θ′

We can run a performance comparison between the straight-forward algorithm and
the optimized one, and we see that the optimized computational time is linear with respect
to the radius size, whereas that for the straight-forward algorithm increases exponentially.
See Figure 2. 40,000 RP samples were run and their average computing time is plotted for
each radius size.

2.2 Likelihood computation

Given a sample of RP, the next computational task is to calculate its corresponding likelihood
of σ ∈ SN . From Eq. 2 we need to calculate Ã(rσi) to calculate the likelihood. Note that
this value is calculated as cars are still being parked according to σ. Symbolically, we let
{θ1, ..., θk} denote the angles of the center of incompletely parked cars (i.e. 1 ≤ k < N),
where θi is the ith car to arrive according to σ. Furthermore, let Ii be as in algorithm (I),
namely [θi − l

ρ
, θi + l

ρ
] for i = 1, ..., k. Then we have Ã(rσk+1

) = ρ(2π − | ∪ki=1 Ii|mod 2π).
The implementation of this calculation is simple, and to calculate the actual likelihood of σ,
we re-simulate the given RP car by car according to σ, after each of which we compute Ã
until the (N − 1)th car. The likelihood is then the inverse of the total product of all Ã. One
thing to note about the likelihood computation is that once N reaches 10, the computation
of all likelihoods (10! of them) becomes infeasible, as the permutations matrix in MATLAB
is only practical for size less than 10.

2.3 Verifications of computation

First we verify the RP simulation code in two different ways. The first way is to confirm
statistical properties of RP, namely the convergence of M(x)/x to Renyi’s constant. Apart
from the periodic boundary condition, the RP we deal with should behave similarly to RP on
a linear street. Furthermore, since as ρ→∞, RP(l,ρ) approximate RP∞, we simulate 10, 000
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Figure 2: Average of 40,000 computational times (sec) for each parameter is plotted. We
see an exponential growth for the unoptimized algorithm, compared to linear growth for the
optimized one.

random parkings for l = 1 and ρ = 1, 2, 3, ...20 and observe the ratio pρ = Mρ

2πρ
, where Mρ is

the average of number of cars parked on circle out of 10, 000 RP(1,ρ)s. The result is shown in
the plot in Figure 3. Shown with each estimate of the Renyi’s constant is the 95% confidence

interval (±2
√

(pρ)(1−pρ)

10000
). We observe that indeed the RP simulation gives convergence to

Renyi’s constant. As radius increases, the random parking with periodic boundary condition
approximates the infinite line random parking.

The second way that we verify the RP simulation code is by graphically checking it is
complete (Fig. 4). That is, we must have no available spaces for parking after simulation
halts. To check this for a given RP, we boldface the intervals Ii (see algorithm I) for all
i = 1, 2, ...N , where no car can park, and see that indeed their union cover the whole street.

Now to verify the computation of likelihood, we must verify the computation of Ã as
we can see from Eq. 2. To do so, we devise another independent, statistical method to
calculate Ã using Monte Carlo integration. After jth car is parked (j = 1, ..., N − 1), we
generate k = 100, 000 random uniform values {φi}100,000

i=1 from [0, 2π] and collect the ones
that fall on the available parking spaces APr̄ = {φ ∈ [0, 2π] : |φ − θi| ≥ l

ρ
, ∀θi ∈ r̄}, where

r̄ = {θ1, ..., θj}. The fraction f of the number of φi ∈ APr̄ versus k will give us an estimate
of Ã by the relation Ã ≈ 2πρf . Since there are some technical intricacies in the algorithm
of this method, we present the pseudoalgorithm:

(III) Algorithm of MC Ã after jth car is parked:
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Figure 3: Even from radius 1, the average density of street covered by cars is close to the
Renyi’s constant, the average density of street covered by cars on an infinite line. We see
that out of the 10, 000 samples for each radius, the margin of error is of order 10−3.

1) Let k = 100, 000 and generate k uniform random values from [0, 2π]
2) Let M1 be a k × j matrix whose columns are repeats of the k random values, and M2 be
a k × j matrix whose k rows are repeats of the parking angles
3) Let ∆ = |M1 −M2|, where | · | takes absolute value of every element
4) Count the number of rows c of ∆ whose every element is larger than l

ρ

5) Let Ã = 2πρ c
k

This method gives agreement to the analytical method within the 99 % confidence intervals
(see a particular example in Fig. 5). To find the standard error for the MC integration, let
us first write the integral we wish to estimate:

Ã = (2πρ)(
1

2π

∫ 2π

0

1APr̄ dφ) (3)

where 1APr̄ is the indicator function of set APr̄ on domain [0, 2π]. Then the integral will give
the total angle value of ‘open areas’ and its ratio with 2π is the fraction f of such angles.
Multiplying this to the whole circumference will give the area of the available space. This
function has the following variance:

Var(1APr̄) ≈
1

k

k∑
i=1

[1φi∈APr̄ − 1]2,
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Figure 4: A 7-car RP with l = 1, ρ = 1.5. The whole street is covered by the extended cars,
whose ends are extended by 1

2
to indicate the region where no other cars can park. This

shows the completeness of the RP.

where 1 =
∫ 2π

0
1APr̄ dφ,≈ 1

k

∑k
i=1 1φi∈APr̄ = f and

Var(ψk) =
(2π)2

k
Var(1APr̄),

where Var(ψk) is the variance of the estimates ψk of Ã. So we expect the standard error

(SD) to be approximately
2π
√

Var(1APr̄ )
√
k

. Now Var(1APr̄) ≈ 1
k
[a(1 − f)2 + (k − a)f 2], where

a = |{φi ∈ APr̄}| i.e. f = a
k
. This can be further simplified to 1

k
[a(1− f)]. So the error is

SD ≈ 2π√
k

√
f(1− f).

We calculate Ã using this method and the analytical method, and see that the MC integration
gives values that are within 3 SDs of the analytical value.
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Figure 5: A 8-car RP with l = 1, ρ = 1.5. On the bottom, the line indicates y = x, and
plotted on top of the line is pairs of computations of Ã (MC and analytical), after each car
is parked in the RP above. We observe a close alignment with y = x and also see that the
pair of points get close to 0 as more cars park.

3 Studies on the Likelihood Function

3.1 Interpretation as a probability distribution

Any introductory treatment of likelihoods will emphasize how a likelihood function is not
a probability distribution. However, since likelihoods take value between 0 and 1, one can
normalize a likelihood function such that its integral or sum equals 1 and treat it as a
probability distribution. We seek to do so here and understand the normalized likelihood
function (NLD) of a given RP to be the distribution of a random variable on SN that
corresponds to a guess of the arrival order of the cars. With regard to inference, a ‘bad’
distribution will be one that gives every permutation in SN equal probability, without any
preference to particular permutations. The best distribution will be one that gives unit mass
on the true order with probability 1. Taking these into account, we establish formulas that
quantify the difference between a NLD and the corresponding ‘bad’ and ‘best’ guesses.

Specifically, we use the Kullback-Leibler (KL) divergence, or also known as relative en-
tropy, to study the differences between the NLD and uniform distribution and the NLD and
unit mass distribution on σ∗. The KL divergence between P and Q measures how much
information is lost when some probability distribution Q is used to approximate another
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probability distribution P , and is defined by:

DKL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
,

where X is a discrete sample space (SN in our case) [8]. In the case that Q(x) = 0 for some
x, we must also have that P (x) = 0, else the relative entropy is not defined. In our case,
there will be no such case. It is also noteworthy that relative entropy is not symmetric i.e.
DKL(P ||Q) 6= DKL(Q||P ) and thus not a true distance measure. We will interchangeably
use the terms ‘relative entropy’ and ‘divergence’.

In comparing between the NLD and the unit mass distribution on σ∗, we want Q to be the
NLD, since the NLD should approximate reality, the unit mass on σ∗. To compare the NLD
to a flat distribution, we let P be the NLD and Q be the flat distribution. This corresponds
to quantifying how different our guess of parameter σ∗ becomes after observing r from the
uniform distribution. So to summarize, the distributions of interest are:

P(1)(σ; r) =
L(σ; r)∑
σ L(σ; r)

(the NLD) (4)

P(2)(σ) = 1σ∗

and

P(3)(σ) = U =
1

|SN |
.

Let us observe the first mentioned relative entropy between the unit mass and the normalized
likelihood:

DKL(P(2)||P(1)) =
∑
σ

1σ∗ log
1σ∗
L(σ;r)∑
σ L(σ;r)

= log

∑
σ L(σ; r)

L(σ∗; r)
(5)

First note that we desire this relative entropy to be small (small means close in distribution).
In order to interpret the numerical value of the relative entropy and see how small it is,
we can compare it to the maximum relative entropy that can be achieved with P(1), i.e.,,
M = maxf DKL(f ||P(1)), where f is a distribution on SN . We observe that a unit mass
distribution on the worst permutation, σ (by which we mean the permutation with the

lowest likelihood), i.e.,, DKL(1σ||P(1)) = log
∑
σ L(σ;r)

L(σ;r)
maximizes the relative entropy with

P(1).
To see this, we write:

max
f

DKL(f ||P(1)) = max
f

∑
σ

f(σ) log
f(σ)
L(σ;r)∑
L(σ;r)

= max
f

∑
σ

f(σ) log
cf(σ)

L(σ)
,

where L(σ; r) has been shortened to L(σ) and c =
∑

σ L(σ). Further expanding, we get:

max
f

DKL(f ||P(1)) = max
f

[∑
σ

f(σ) log(cf(σ))−
∑
σ

f(σ) logL(σ)
]
. (6)
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So we would like f to maximize∑
σ

f(σ) log(cf(σ)) =
∑
σ

f(σ)(log c) +
∑
σ

f(σ) log f(σ)

= log c+
∑
σ

f(σ) log f(σ)

and minimize
∑

σ f(σ) logL(σ) (see Eq. 6). But since f(σ) ≤ 1, we have log f(σ) ≤ 0.
So to maximize

∑
σ f(σ) log f(σ), we choose a unit mass distribution for f to make the

sum achieve 0, its supremum. But notice that
∑

σ f(σ) logL(σ) is a weighted sum of the
likelihoods as 0 ≤ f ≤ 1 and

∑
σ f(σ) = 1. So a correctly chosen unit mass distribution will

also minimize this part. To choose the correct permutation of unit mass, we let σ denote the
worst permutation with the least likelihood since we want to minimize

∑
σ f(σ) logL(σ).

So we have M = log
∑
σ L(σ)

L(σ)
. Then we establish a measure on information gained with:

Y1 =
M −DKL(P(2)||P(1))

M
.

If the ratio of (5) to DKL(1σ||P(1)) is small, the likelihood analysis will be informative,
as one shows how different the normalized likelihood distribution (NLD) is from the true
distribution 1σ∗ and the other how different the NLD is from the distribution corresponding
to the worst guess, 1σ.

Next let us observe the relative entropy between P(3)(σ) = 1
|SN |

and P(1)(σ; r), and see
how to quantify how large it is. If it is large, then this implies that the two probability
distributions are very different, meaning we gain much information by moving from the
uniform distribution to the NLD. The largest value that DKL(f ||P(3)) can take is when f
is some unit mass distribution, e.g. f = P(2). Then we have DKL(P(2) ||P(3)) = 1 log 1

1
|SN |

=

log |Sn| =
∑N

i=1 log i. We can thus compare DKL(P(1)|P(3)) with
∑N

i=1 log i. If the divergence
in Eq. 7 is close to this maximum, then we will have an informative likelihood analysis:

DKL(P(1)|P(3)) =
∑
σ

L(σ; r)∑
σ L(σ; r)

log
|SN |L(σ; r)∑

σ L(σ; r)

=
∑
σ

L(σ; r)∑
σ L(σ; r)

[ N∑
i=1

log i− log

∑
σ L(σ; r)

L(σ; r)

]
. (7)

Thus to quantify the information gained, we find the ratio of (7) and
∑N

i log i, which we
can express as:

Y2 =
DKL(P(1)|P(3))

DKL(P(2)|P(3))

We observe that not all likelihoods of RPs give the same amount of information Y1, Y2.
For example, we see in Fig. 6 that for a 6-car RP, DKL(P(1) ||P(3)) = 0.078 (‘Divergence 1’
from the uniform distribution), resulting in Y2 = 1.18% (‘Percent of max 1’), whereas for a
7 car RP (Fig. 7) with same l, ρ as the 6-car RP, has the same divergence of 1.13, which
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Figure 6: A 6-car RP with l = 1, ρ = 1.5. Below we see the likelihood function with diver-
gences and weight of the first correct guess. Divergence 1 is DKL(P(1)|P(3)), and divergence
2 is DKL(P(2)|P(1)). The percentage of max is Y2, and the information gained is Y1. The
function looks more or less flat, giving a low divergence from uniform distribution. The
marker denotes the magnitude of the likelihood of σ∗.

corresponds to Y2 = 13.28%. Also for the divergence from the unit mass distribution, we see
that the 6-car RP gives about Y1 = 13%, whereas the 7-car RP gives Y1 = 47.5%.

From observing these two examples, we conjecture that the geometry of the RPs affects
these statistics. The 6-car RP has relatively even gaps with similar sizes compared to the
7-car RP, which has both very small to mid-sized gaps and a very large one. To study the
relationship of geometry with Y1, Y2, we run many RP simulations with (l, ρ) fixed and plot
{Yi}2

i=1 against different geometric factors.
First we look at g1 = N

Nmax
, the number of cars parked normalized by the maximum number

of parkable cars. We present boxplots of Y2 for RP(1,1) against g1 in Fig 8. We observe that

the distribution of Y2 ‘favors’ higher g1. For RPs with density g
(1)
1 = 4/6, the maximum of

Y2 seems to be bounded from above at 15%, while that for RPs with density g
(3)
1 = 6/6, the

minimum of Y2 seems to be bounded from below at around 10%. The median of Y2 increases
as g1 increases, which we can interpret as resulting from the increased possibility of having
more disordered RPs as more cars park. The increased disorder results in a NLD that has
more curvature and thus gives more information.

So we see that the density of cars on the street influences how much average divergence the
NLD will have with a flat distribution. We also look at Y1, to see if any correlation could be
made with some geometrical factor. From experiments, we see that there is correlation with
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Figure 7: A 7-car RP with l = 1, ρ = 1.4. The likelihood function appears different from the
uniform distribution, with a group of orders receiving more weight. The weight of likelihoods
that guess correctly the first order is 0.09081. We see higher Y1, Y2 than before.

the variance of the gaps and Y1. Fig. 9 shows many samples of RP(1,1) with their variance of
gaps and Y1. While the scatter plot looks cluttered with not much correlation, one can see
that it is indeed a superposition of three different scatter plots: one for each possible density
{g(i)

1 }3
i=1 (see Figs. 10-12).

Specifically, when we isolate the RPs according to their density g1, the positive correlation
between the variance of gaps and Y1 is more pronounced, suggesting that if the gaps are
evenly spaced, less information about σ∗ can be gleaned from NLD compared to when the
gaps are more unevenly spaced (see Figs. 10-12). To see the effect that geometry has on the
likelihood, it is helpful to imagine trying to guess the order in which a set of equally distanced
cars were sequentially parked on a circle. Even if it is known, say, that each subsequent car
was parked adjacent to one another, an immediate ambiguity arises as to which car was the
first to park due to symmetry.

3.2 Interpretation as information for inference

While the NLD can be studied in its entirety as a distribution compared to other distri-
butions, parts of NLD can be analyzed to probabilistically answer inference problems. For
instance, given a random parking r, we can look at the weight of likelihoods w1

1 that guess
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Figure 8: Boxplot of Y2 against g1 for RP(1,1). 400,000 RP samples were taken, among

which 127,832 had density g
(1)
1 = 4/6, 265,553 had density g

(2)
1 = 5/6, and 6, 615 had density

g
(3)
1 = 6/6. We see that the median Y2 increases as the number of cars on the street increases,

as well as the observed maximum Y2. The crosses above are outliers.

correctly the first car:

w1
1 =

∑
σ:σ1=1 L(σ, r)∑
π L(π, r)

,

where wji =
∑
σ:σi=j

L(σ,r)∑
π L(π,r)

, with σi being the ith element of permutation σ and j representing

the true jth car. To do this, we sum the likelihoods that correspond to permutations starting
with 1, and divide by the sum of all likelihoods. We can extend this to look at the weight of
likelihoods wii that guess correctly the ith car:

wii =

∑
σ:σi=i

L(σ, r)∑
π L(π, r)

.

For example, we can look at Fig. 6 and 13. Note that a uniform distribution on the RP in Fig.
6 would give w1

1 = 1
6
, which is slightly bigger than that from the likelihood function, 0.16574.

Here is an instance of where the guessing the absolute order of car arrival (e.g. the 1st, 2nd

car) using likelihood is more or less similar to guessing purely randomly. The next example
of the 8-car RP in Fig. 13 is an instance where it is actually better: w1

1 = 0.14541 > 1
8
.

This type of weight of likelihood can then be used to answer the problem of identifying
the first car, for example, by finding:
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Figure 9: Scatter plot of Y1 against variance of gaps for RP(1,1). Although there does not
seem to be a strong correlation, this is a superposition of three scatter plots shown in the
next three figures, where it is clearer to see the correlation.

c1 = arg max
i∈[N ]

( ∑
σ:σ1=i

L(σ, r)
)

= arg max
i∈[N ]

(wi1),

where [N ] = [1, 2, 3, ...N ]. We do this by summing up the likelihoods that assign car index
i to be the first, for each i = 1 through N , and finding the index c1 whose sum attains the
maximum. Likewise, we can look at to which car cn the likelihood analysis gives most weight
to be at the nth order,

cn = arg max
i∈[N ]

( ∑
σ:σn=i

L(σ, r)
)

= arg max
i∈[N ]

(win).

If the likelihood analysis is informative, we expect c1 = 1 and cn = n (the correct cars).
As seen on Table 1, we run a small numerical experiment using ρ = 1, l = 1, where we

simulate 40, 000 random parkings for each density g
(1)
1 , g

(2)
1 , g

(3)
1 , find the number of times k

that cn = n, and calculate p = k/40, 000 ≈ P(cn = n).
We also report in the fourth column the mean of wnn from the same 40, 000 simulations

along with the standard deviation, and remark that it is smaller than p, suggesting that the
distribution of wnn for fixed N car parking must have a left tail that brings down the mean.
Also note that the likelihood analysis gives p that is higher than what random guessing
would give, since for N = 4, p would center around 0.25, for N = 5 around 0.2, and for
N = 6 around 0.16, suggesting that using the likelihood function improves our guess of
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Figure 10: Scatter plot of Y1 against variance of gaps for RP(1,1) with density g
(1)
1 . We

see consistently high Y1 after the variance of the gap exceeds about 0.027, and the linear
correlation is r = 0.44.

absolute arrival order of single cars.

Finally, we can also look at how much weight of likelihood is given to guessing correctly
the relative arrival orders. For example, we can ask how much likelihood w12 is given to
the permutations that correctly identify the relative order of two cars, e.g., the first two to
arrive:

w12 =

∑
σ:σ(1)<σ(2) L(σ, r)∑

π L(π, r)
,

where σ(i) is the index of element i in the permutation. To study the statistics of these
numbers, we compute the empirical distribution of wijs, for different i and j by running
many RP simulations with fixed l, ρ,N . For instance, we see that for l = 1, ρ = 1, and

Table 1: Estimate p of P(cn = n) for RP(1,1).

N n p ŵnn SD of wnn
4 1 0.28208 0.25448 0.03136
4 2 0.27973 0.25456 0.03145
5 1 0.25503 0.21576 0.04534
5 2 0.25553 0.21565 0.04522
6 1 0.21005 0.1806 0.04223
6 2 0.21220 0.1805 0.04258
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Figure 11: Scatter plot of Y1 against variance of gaps for RP(1,1) with density g
(2)
1 . We

observe a positive correlation (r = 0.57) between the variance of gap and Y1.
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Figure 12: Scatter plot of Y1 against variance of gaps for RP(1,1) with density g
(3)
1 . Again we

see a positive correlation (r = 0.43) between the variance of gap and Y1.
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Figure 13: A 8-car RP and its likelihoods with divergences and weight of first correct guess.
We see that the weight of likelihood of permutations guessing correctly the first car is more
than 1

8
= 0.125 which uniform distribution would give.

N = 4, 5, 6, the distribution of w12 is centered around a half with a larger spread in both
directions as N increases (Figs. 14, 30, 31 in Appendix). The centering around half means
that NLD is similar to uniform guessing, while the increasing spread as N increases shows
increasing variance of the 1st-2nd order guessing performance of likelihood analysis. But
for certain i and j, we have more skewed distributions with positive deviation from a half,
indicating better predictive analysis. For instance, with fixed l = 1, ρ = 1, we look at w1N ,
for different N : 4, 5, 6 (i.e. guessing the relative order of first and last car). We see in Figs.
15, 32, and 33 (in Appendix) that there is more mass towards the right side of half, when
uniform guessing would give only a half. This seems to suggest that the likelihood analysis
does better at guessing relative order of cars that came at a larger time interval.
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Figure 14: Distribution of w12 for l = 1, ρ = 1, N = 4. We see a centering around half, with
slightly more mass towards the right of 0.5. The mean w12 is 0.4514.
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Figure 15: Distribution of w15 for l = 1, ρ = 1, N = 5. We see more mass towards the right
of 0.5, indicating better prediction ability than 50%. The mean is 0.5747.

22



4 Inference

4.1 Problems

As mentioned above, we can pose problems about relative orderings of two cars. Although a
lot of such problems can be asked, we present the ones that have a high probability of being
inferred correctly.

1. Idenfity the pair of cars with the minimum gap. Which one came earler?

2. Identify the car that has clockwise and counterclockwise adjacent cars c1, c2 such that
wc1c2 is the largest out of all such pairs (that have a car in between). Which car out
of c1 and c2 came earlier?

3. Identify the pair of adjacent cars c1, c2 such that wc1c2 is largest out of all adjacent
pairs. Which one came earlier?

4. Given that two cars are the first and the last, which is which?

We can also ask problems about relative orderings of groups of cars. Consider the following
‘Two-color problem’:

• Given that a set of cars to park are half (or bN/2c if N is odd) white and half black,
and that all cars of the same color sequentially enter the street first with all the other
colored cars parking second, which color was the first?

4.2 Likelihood method

4.2.1 Problems 1–4

We can use the likelihood function to probabilistically answer the above problems. For
problems 1 through 4, the likelihood method involves first identifying the two cars c1, c2,
computing wc1c2 and wc2c1 = 1−wc1c2 , and guessing with probability wc = max{wc1c2 , wc2c1}
that c1 came first if wc1c2 > wc2c1 or c2 if otherwise. Note: Since this method is a probabilistic
method, it can be viewed as a forecast of a binary event. Forecasts are rated by skill scores,
so we assess the accuracy of the likelihood method by using Brier skill scores (BS) [9]. In
our context, BS is defined as

BS =
1

k

k∑
i=1

((wc)i − Ii)2,

where k is the number of forecasts made and Ii is whether the ith forecast was correct (1 if
yes, 0 if not). Thus a small BS close to zero is an indicator of a good forecasting method.
For example, the uniform distribution guesses the correct answer to problems 1)-4) with 50%
accuracy, and the corresponding BS would be 0.25 = 1

k

∑k
i=1 0.52.
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4.2.2 Monte Carlo for large N

When finding wc1c2 for RPs of size N ≥ 10, we must resort to Monte Carlo methods (MC)
instead of directly computing wc1c2 , as we run to memory problems due to the size of the
permutation matrix. Specifically, given a RP of size N , we implement a Metropolis Hastings
algorithm to sample from SN according to the NLD, a random variable we will call Σ. We
can use this method since

wc1c2 = P(Σ ∈ Π12)

= E1Π12 ,

≈ 1

M

M∑
i=1

1σi∈Π12 (8)

where {σi}Mi=1 is the Markov chain with M >> 0 steps, and Π12 = {σ ∈ SN |σ(c1) < σ(c2)}.
Our proposed move is a lazy random transposition as suggested by Diaconis [11]:

σ0 ∼ U(SN), uniform over SN

P(σi → σi+1 = σi) = 1
N
,

P(σi → σi+1 = σi · t) = 2
N2 , where σi · t is transposition on σi

P(σi → π) = 0, if π is neither σi · t nor σi.

We accept the transition move with the following acceptance criteria: Let σi+1 be the pro-
posed move, then

• Accept σi+1 with probability p = min{1, L(σi+1)
L(σi)

}

• else, σi+1 := σi and propose another move.

To illustrate that the MC method works correctly, we show several things: the convergence
of the running mean of a function of σi, the extent of mixing across the sample space, the
autocorrelation, and an approximation of a NLD for a low N -RP using the MC method,
which we compare with the exact NLD. First, to observe a running mean of the Markov
chain, we must decide on a function d : SN → R. To do so, we assign each permutation with
its distance away from the identity permutation. While there are several metrics in SN , we
choose the Kendall-Tau (KT) metric dK [12], as it can take on more values and contains
more information about the difference in relative orderings between two permutations φ, π:

dK(φ, π) =
1

N(N − 1)

N∑
i,j=1

1(φ(i) > φ(j) ∧ π(i) < π(j)),

where N(N − 1) is a normalization factor such that dK(φ, π) ∈ [0, 1].
Using this distance, we calculate the running mean of {dK(σi, I)}Mi=1, where I is the identity

permutation. We see a convergence towards a mean E(dK(Σ, I)) (Fig. 16).
Similarly, we can plot {dK(σi, I)}Mi=1 against i and we see that the Markov chain samples

both permutations whose distances from I are large and small, mixing well throughout the
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Figure 16: Running mean of distance away from I of a Metropolis MC of NLD of a 13-car RP.
The first few steps of MCMC do not converge to the mean distance from I of permutations
distributed by the NLD, but after 5,000 steps, the running mean distance starts to converge.
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Figure 17: Sampling of SN by Metropolis MC, {σi}26000
i=1 , for sampling NLD of 13-RP. The

Kendall tau distance of MC steps from I is plotted and we see a thorough mixing across
different possible distances from 0 to 1

whole space (Fig. 17). Now to see the rate of convergence, we can look at the autocorrelation
function, which decays exponentially (Fig. 18). Results of autocorrelation time computed
using method by Sokal [13] consistently give less than 10 steps. The autocorrelation time τ̂
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Figure 18: Autocorrelation function of Metropolis MC of {dK(σi, I)} for NLD of a 13 car-RP.

is computed by letting λ(t) =

{
1 if |t| ≤ N

0 if |t| > N
, where N is some integer, and computing

τ̂ =
1

2

M−1∑
−(M−1)

λ(t)ρ̂(t),

where M is the total number of steps and ρ(t) is the normalized autocorrelation function
C(t)/C(0), with C(t) being the autocorrelation function. The integer N is computed as the
smallest integer such that N ≥ cτ̂(N), where c ≈ 6 [13]. A Metropolis MC for a 13-car RP
gives τ̂ ≈ 1. Also, we calculate the acceptance ratio (acceptance of different move), and we
see that simulations give acceptance rates between 58% and 60%. Finally, we run MC on a
6-car RP and draw a histogram, comparing it to the NLD which can be directly obtained.
We see a good approximation in Fig. 19.

4.2.3 Two-color problem

For the two color problem the likelihood method involves summing up the likelihoods of
permutations that correspond to N/2 (or bN/2c if N odd) single colored cars being the first
half cars to arrive and comparing this sum s1 to the sum of likelihoods s2 corresponding to
N/2 (or bN/2c+ 1) cars of the other color being the first half to arrive. Then we guess with
probability s = max{s1, s2}/(s1 +s2) that color 1 came first if s1 = max{s1, s2} or that color
2 came first if s2 = max{s1, s2}. This method works for systems of low N ≤ 10. For large
N we were not able to develop a suitable MC method.

4.2.4 Results for problems 1–4

Using either direct calculation of wc1c2 or using Eq. 8, we answer the problems using the
likelihood method of probabilistic prediction in section 4.2.1. We present the results on the
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Figure 19: Approximation of NLD using MC method for 6-car RP. The x-axis is the row
number of each permutation (6! = 720) according to MATLAB’s perms matrix. The blue
dotted line is the approximation using histogram of MCMC and the red solid line is the
actual NLD.

following pages, from Figs. (20)-(23), which show that the likelihood method performs better
than random guessing, exceeding 70% answer rate around ρ = 6 for problems 2-4 and 60%
for problem 1. We remark that all problems show steady increase of accuracy as the street
radius ρ increases. Because of the computational cost, we run 1000 samples of RP for each
radius. We put all four plots (without error bars for clarity) on the same plot in Fig. 24 and
see that problem 1 has the lowest accuracy, whereas the other three problems are answered
with similar accuracy using the likelihood method.

4.2.5 Results for two-color problem

We sample 10, 000 unit length car RPs for small radii and apply the likelihood method for
the two color problem to each RP. Since we can find exact likelihood of RP up to 10 cars, we
range our radius from ρ = 1 to 1.7, at which Nmax = 10. Similarly, we see from Fig. 25 that
accuracy is consistently higher than 50% (≥ 65%) and increasing as street radius increases.

4.3 Geometric estimation

4.3.1 Problems 1–4

The limitation to the likelihood method in estimating the answer to these problems is the
computational cost. Even though there is way to calculate wc1c2 for RPs of large N using
the MC method, the Markov chain also does not have a low computational cost. Therefore,
to run many samples of RP and answer inference problems using the likelihood method is
impractical for N large (for N ≥ 8 computations exceed 1 second.) However, using the fact
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Figure 20: Accuracy of predictions to Problem 1 for RPs with l = 1 and ρ = 1 to 12. Accuracy
is defined as the proportion of correct guesses of relative order in the 1000 simulations.
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Figure 21: Accuracy of predictions to Problem 2 for RPs with l = 1 and ρ = 1 to 12.
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Figure 22: Accuracy of predictions to Problem 3 for RPs with l = 1 and ρ = 1 to 12.
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Figure 23: Accuracy of predictions to Problem 4 for RPs with l = 1 and ρ = 1 to 12.
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Figure 24: Accuracy of predictions to Problems 1-4 for RPs with l = 1 and ρ = 1 to 12.
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Figure 25: Accuracy of predictions to two color problem using direct likelihood computation
for small ρ = 1 to 1.7.
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that in a RP, the earlier arriving cars will have more space to park compared to the latter
ones (recall that Φ(t)→ 0 as t→∞ as discussed in 1.1), we can construct methods relying
on the geometry of RP to estimate the answers to all the inference problems. Of course,
problems 2-3 must be restated now since they involve computing wc1c2 and this geometric
method will not involve computation of likelihoods. To restate the problems, let cci denote
the clockwise adjacent car of ci and ccci denote the counterclockwise adjacent car. Also, let
γ(ci)

(1) and γ(ci)
(2) be the left and right gap of car ci. Define a surrounding gap Γ(ci) to be

Γ(ci) := γ(ci)
(1) + γ(ci)

(2).

2. Identify the car ci′ that maximizes |Γ(cci) − Γ(ccci )|. Which out of cci′ and ccci′ came
earlier?

3. Identify the car ci′ that maximizes |Γ(ci)−Γ(cci)|. Which out of ci′ and cci′ came earlier?

Then, once we are given {c1, c2} whose relative order we wish to find, we estimate the
order to be [cM , cm], where cM came earlier, where cM and cm are such that Γ(cM) =
max{Γ(c1),Γ(c2)} and Γ(cm) = min{Γ(c1),Γ(c2)}.

4.3.2 Two-color problem

For the two color problem, there are several geometric ways to estimate the order of the
colors. First, we can use a similar method as above. This method is inspired from the fact
that the available space Φ(t) goes to 0 as time progresses.

1. Identify car c such that Γ(c) = min{Γ(ci)}Ni=1. Let the color of c be the second color.
(The ‘Minimum surrounding gap method.’)

Another method is to observe the two-colored cars separately. This method is inspired from
the observation that the first half cars can spread themselves out more than the second half
cars, which are restricted to park in between the already parked first half cars:

2. Let m1 = min{γ(ci)
(1)}ci∈G1 and m2 = min{γ(ci)

(1)}ci∈G2 , where Gj is the set of cars
with only color j for j = 1, 2. Let j′ be the second color where mj′ = min{m1,m2}.
(‘The minmin method.’)

The final method also looks at the two sets of cars separately. This method aims at exploiting
the difference in the parking behavior of the first and second half of cars:

3. Find distribution ∆1 of γ(G1)(1) and ∆2 of γ(G2)(1), where γ(Gi)
(1) is the set of gaps

between cars of only color i (measuring gap by ignoring different colored cars that may
be in between). Compare ∆i with G(h, t) at t = t∗, where t∗ is the time that ρ(t∗) is
half of Renyi’s constant, and choose i that matches more closely to be the first color.
(‘The gap density method.’)

We further explain how exactly the gap density method works. We choose l and ka to be 1
in both our simulations and in the formula for G(h, t∗) (see section 1.1). The distribution
∆i is a histogram, and we choose evenly spaced centers {hj} on the x-axis, find

min
i∈{1,2}

∑
j

|∆i(hj)−G(hj, t
∗)|,

and choose the i that gives the minimum as the first color.
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4.3.3 Results for problems 1–4

We observe that the geometric method gives surprisingly accurate answers for problems 1−4
(Fig. 26). The topmost line corresponds to the problem of estimating relative order between
the first and last cars; the second from the top line to that of relative order between clockwise
and counterclockwise neighbors of the ‘best’ car (difference in Γ of the pair is largest); the
third line to that of relative order between cars with minimum gap; and the last line to that
to relative order of the ‘best’ pair of adjacent cars. We see that the geometric method far
outperforms the likelihood method in problem 4, as by radius 5, the geometric method has
already exceeded 90% accuracy, while the likelihood method has barely exceeded 70%. For
the relative order of adjacent pairs (problem 3), however, the likelihood method outperforms
the geometric method, reaching close to 80% at radius 12, whereas the geometric method
gives around 65% probability of correct answer at the same radius. The question of relative
order between clockwise and counterclockwise cars (problem 2) seems to be answered with
similar accuracy by both likelihood and geometric method.
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Figure 26: Accuracy of predictions to problems 1-4.

4.3.4 Results for two-color problem

We first present results of implementing method 1-2 in Figs. 27. The line that has the greater
increase in accuracy from street radius 1 to 25 is the minimum surrounding gap method, and
the method with slowly increasing accuracy is the minmin method. We see that these two
geometric methods give consistently high accuracies, and we see that the likelihood method
and the minimum surrounding gap method perform similarly for small radii around 1. The
fact that the minmin method gives high accuracy tells us that the latter half cars tend to
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Figure 27: Accuracy of predictions to two color question using geometrical methods 1-2.
The error bars are 1.95 standard deviation. The minmin method (method 2) outperforms
the min-surrounding-gap method for low ρ but underperforms for larger ρ.

have cars more closely to each other. This arises from the fact that their distributions are
different, which we further exploit in the gap density method.

Notice in Fig. 28 of the gap density method that there is low accuracy for small street radii
as expected from approximation error, since we are approximating the gap distribution of a
small street RP with that of RP∞. As the radius becomes larger, however, the approximation
gets better and we see an increasing accuracy due to the closeness of the fit of ∆i′ to G(h, t∗),
where ∆i′ is the distribution of gaps of the cars of first color i′.
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Figure 28: Accuracy of predictions to two color problem using gap density comparison. Low
accuracy is observed for low ρ as these RPs do not resemble RP∞, but higher accuracy is
observed as ρ increases, as these RPs start to resemble the infinite line case.

5 Analytical explorations on R∞

5.1 First two moments of Γ(ct)

Because of the successful estimating ability of the minimum surrounding gap method in the
two color problem and also of the geometrical methods in problems 1 − 4 , we explore to
quantify the expected surrounding gap length that a car entering at time t will have on an
infinite length street, which we express as E(Γ(ct)), where ct is a car that enters the street
at time t. Such study was done by Ziff [14] for random sequential adsorption of dimers on
1D lattice [15]. To find E(Γ(ct)), first we find the following integrals En(t) that will help in
our calculation of the expectation:

En(t) =

∫ ∞
l

(h− l)n G(h, t)∫
≥lG(h′, t)dh′

dh

=
n!

(kat)n
, (9)

See Appendix for detailed calculations. We call these integrals En(t) as they take on the
form of the moments of an exponential random variable (E for exponential) with parameter
kat.

Now to find E(Γ(ct)), note that ct will only park itself on one of the available spaces, whose
conditional distribution f(h, t) (conditioned on only available gaps) we can find using the
available space function Φ(t) =

∫
≥l(h̃ − l)G(h̃, t)dh̃. Since the probability of a gap being

chosen is proportional to its length greater than the car size l, (h− l) (a car cannot park on
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a gap of size l), we write:

f(h, t) =
(h− l)G(h, t)∫
≥l(h̃− l)G(h̃, t)dh̃

,

for gap h ≥ l. Depending on which gap h that car ct lands, the length Γ(ct) will be (h− l).
So we have

E(Γ(ct)) =

∫ ∞
l

(
h− l

) (h− l)G(h, t)∫
≥l(h̃− l)G(h̃, t)dh̃

dh

=
2

kat
. (10)

See Appendix for detailed calculations. As expected, we see that E(Γ(c0)) =∞, as the first
car will have no other cars and the whole street as its surrounding gap. A note of interest
about E(Γ(ct)) is its independence of car length l.

Also note that the higher the rate ka of cars’ entering the street, which is defined as
the length of time interval between two parking attempts (to a spot also chosen uniformly
from the street), the faster E(Γ(ct)) decreases as time progresses. This is expected, as
given a fixed period of time, more cars would likely to have parked compared to a RP with
smaller ka, resulting in smaller surrounding gaps due to the larger number of cars. We
experimentally verify the inverse relationship of E(Γ(ct)) with t by running 1, 000 samples
of RP(1,60) to approximate RP∞ and average the surrounding gaps of cars entering at fixed
times, {ti}50

i=1 = {1, ..., 50} (scaled by ka). Then, without taking into account the first point
(where the surrounding gap of the first car will always be 120π−1 whereas RP∞ has infinity
surrounding gap at t ≈ 0), we fit this curve of averages to the equation E = 2/(kat) and see
similar behavior between the average of the experimental results and E(Γ(ct)) = 2

(2.6E−03)t
.

See Fig. 29.
The variance of Γ(ct), V(Γ(ct)), can also be found in a similar way:

V(Γ(ct)) =

∫ ∞
l

(
h− l

)2 (h− l)G(h, t)∫
≥l(h̃− l)G(h̃, t)dh̃

dh− 4

(kat)2

=

∫
≥l(h̃− l)

3G(h̃, t)dh̃

Φ(t)
− 4

(kat)2

=
6

(kat)2
− 4

(kat)2

=
2

(kat)2
. (11)

.
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Figure 29: Experimental computation of E(Γ(ct)) for RP(1,60). 1, 000 samples were used to
average the surrounding gaps of cars entering at the time instances {ti} that are scaled by
ka. For each time instance, the RP samples give different surrounding gap of the car entering
at that time. Here, by the result of the fitting of the average, we see that ka ≈ 2.6E − 03.
As expected by theory, we see an inverse relationship of the average with time t, which we
can model with E(Γ(ct)) ≈ 2

(2.6E−03)t
.

6 Conclusion

Using MATLAB, we have implemented an optimized complete random parking simulation
on a circle with linear computational time with respect to the size of the radius. After veri-
fication of the code, we have studied the average, statistical behavior of likelihood functions
of random parking RP(l,ρ), with l, ρ fixed, viewing them as probability distributions on pos-
sible permutations of arrival history to be measured against the uniform distribution and
the unit mass distribution on the true permutation. We see that geometry of each RP(l,ρ),
such as the number of cars and the variance of the gaps, is associated with the relative
entropies. For instance, the variance of gaps is negatively associated with the divergence of
the normalized likelihood distribution (NLD) with the unit mass distribution on the true
permutation, whereas the number of cars is somewhat positively associated with the relative
entropy of NLD with the uniform distribution. We conjecture that this phenomenon is due
to the general fact that the more disorderly the RP, the better we can infer information about
σ∗. Instead of looking at likelihood functions as a whole, we can extract a part of the func-
tion, namely the weight of likelihoods of certain set of permutations, to make probabilistic
decisions on the relative arrival orderings of pairs of cars.

We have come up with methods to estimate with high accuracy inference problems on RP.
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In particular, we have looked at four problems involving relative order of arrivals of specific
pairs of cars and answered them using the weights of likelihood, resulting in accuracies higher
than 50%, which is what random guessing would achieve. We discovered that the accuracy
increase as the street radius increases. Because of the computational time of computing
likelihoods or implementing MC methods for large radius, we obtained a much faster and
comparably accurate geometrical guessing where only the surrounding gaps of cars are taken
into account. Achieving high accuracy shows that it is possible to in some sense extract
information about the history of RP. Another inference question we looked at is the two
color problem, for which we can obtain accuracies ≥ 70% using either weights of likelihood
or geometrical indicators. There are several geometrical methods to estimate the answer, all
of which involve observing the gaps and increase in accuracy as the street radius increases,
at the limit of which is RP∞ where there are many established theoretical results.

A comment about the two different methods of answering the inference problems, namely
the likelihood and geometrical method, is that while the former is a probabilistic prediction
of the answer, the latter is a deterministic prediction making no use of probabilities. As
such, the geometric method is much faster than the likelihood method because it does not
require computing probabilities of each possible answer. However, the likelihood method
gives information about the NLD associated to the RP in problem, as we can learn about
its weights wij’s, or sample from the NLD in case of large N RPs. Through the geometrical
method, no information about the NLD can be obtained.

Finally, using established theoretical results on RP∞, we explored the random variable
Γ(ct), which is the length of the surrounding gap that a car entering an infinite line at time
t will have, and obtained its first two moments, both of which take a relatively simple form
and decay to zero as t→∞.
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7 Appendix

Details of Eq. 9: Let F (u) = u2 exp
(
− 2

∫ u
0

1−e−s
s

ds
)
. Then,

En(t) =

∫ ∞
l

(h− l)n G(h, t)∫
≥lG(h′, t)dh′

dh

=
F (kalt)

l2
∫
≥lG(h′, t)dh′

∫ ∞
0

h̃ne−kath̃dh̃ [plugging in G and change of variable]

= kat

∫ ∞
0

h̃ne−kath̃dh̃ [cancellation of F with part of

∫
≥l
G(h′, t)dh′ = kate

−2
∫ kalt
0

(1−e−s)
s

ds]

= kat
[ n!

(kat)n+1

]
=

n!

(kat)n
.

Details of Eq. 10:

E(Γ(ct)) =

∫ ∞
l

(
h− l

) (h− l)G(h, t)∫
≥l(h̃− l)G(h̃, t)dh̃

dh

=

∫
≥l(h− l)

2G(h̃, t)dh̃

Φ(t)
[multiply E2(t) and

∫
≥l
G(s, t)ds to get numerator]

=

∫
≥lG(s, t)ds 2

(kat)2

Φ(t)

=
kate

−2
∫ kalt
0

1−e−u
u

du 2
(kat)2

e−2
∫ kalt
0

1−e−u
u

du

=
2

kat
,

where the third equality comes from the rearrangement of Eq. 9.
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Figure 30: Distribution of w12 for l = 1, ρ = 1, N = 5. There is more spread than the case
N = 4, and the mean is 0.4446.
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Figure 31: Distribution of w12 for l = 1, ρ = 1, N = 6. There is even more spread than the
case N = 5, and the mean is 0.451.
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Figure 32: Distribution of w14 for l = 1, ρ = 1, N = 4. More mass is towards the right of
0.5, and the mean is 0.475.
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Figure 33: Distribution of w16 for l = 1, ρ = 1, N = 6. Significant more mass is toward the
right of 0.5, and the mean is 0.5672.
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