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In 1984, Packard [1] introduced simple planar cellular automata to emulate
the growth of snow crystals. ThesePackard Snowflakes have since been
popularized by S. Wolfram and others, most recently in [2]. The present
paper provides a rigorous analysis of the simplest examples: those with
nearest neighbor interaction on the two-dimensional integers. In each case
we determine the asymptotic density with which the spreading crystal fills
the plane. For the basicExactly 1 rule started from a singleton, we establish
alternate representations of the final state as a uniform tag system and as a
substitution system.
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1 PRELIMINARIES

Introduction
Snow crystals have inspired mathematical modeling for more than a century,
dating back at least as far as the early fractal known as the Koch Snowflake [3].
The details of real snowflake growth, whereby water vapor gradually freezes to
form the growing crystal, are still poorly understood.An extremely simple pro-
totype for planar growth was proposed by Packard [1]. In his cellular automa-
ton (CA) model, eachcell (or site) of a planar lattice changes from empty to
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occupied as that location turns to ice and remains occupied thereafter. A cell
“freezes” when it has one frozen neighbor, or when the number of frozen neigh-
bors equals some prescribed higher count. Cells of the original 1984 model had
six nearest neighbors, reflecting the hexagonal molecular structure of ice and
observed symmetry of actual snow crystals. Subsequenct studies [2,4] include
simulations on the two-dimensional intergersZ2 with 4 and 8 nearest neigh-
bors, the so-calledvon Neumann andMoore neighborhoods, respectively.

As they grow, hexagonal Packard Snowflakes develop intricate patterns
reminscient of real snowflakes (cf. Fig. 8 of [5]). Indeed, Wolfram and others
have argued (e.g., in [6,7], and [2]) that the similarity demonstrates the ability
of simple local interactions to capture essential features of complex natural
processes. Recent advances in our understanding of real snow crystal growth,
however, make it clear that the Packard rules evolve in a very different manner
than do the sectored plates they ressemble at certain stages of development.
More realistic lattice algorithms, based on physical principles, are currently
being developed by Gravner and Griffeath [5, 8]; see those articles for an
extensive bibliography of the modeling literature.

Despite their limited realism, the Packard rules are basic cellular automata
with fascinating properties. Wolfram has described the patterns they gener-
ate as “intricate, if very regular” [2, p. 171]. Gravner and Griffeath [9] first
provided a precise analysis of a Packard Snowflake on the Moore neighbor-
hood and proved that it fills the plane with asymptotic density4

9. Their more
recent paper [10] gives quite a complete rigorous treatment of all the original,
hexagonal Packard rules.

Our objective here is to present a corresponding mathematical description
for all Packard automata with the most elementary neighborhood structure:
the von Neumann case. We will focus on the evolution of crystals started from
a singleton, derivation of exact formulas for their cell counts at dyadic times,
and calculation of asymptotic densities with which they fill the plane. Figure 1
shows a still frame of theExactly 1 Packard Snowflake that will be the fea-
tured example of our study.Amore general analysis of asymptotic density from
arbitrary finite initial seeds can be carried out using the methods of [10]. Tech-
niques from that paper also apply to the description of macroscopic dynamics.

While mathematically rigorous, our results have been obtained after exten-
sive experimentation. This project would not have been possible without the
aid of an interactive CA simulator for visualization and data analysis. We are
grateful to MirekWojtowicz for creating theMCell software [11] used through-
out our research and for all the figures included here. Likewise, the reader
should considerMCell (or some such simulator) indispensible for careful
study of our work.

The paper is organized as follows. In the remainder of this Introduction, we
formalize the cellular automata we will study, describe a simple transforma-
tion T that plays a key role in our analysis, and then review the familiar
Sierpinski lattice embedded within the evolution of Packard Snowflakes.
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FIGURE 1
Exactly 1 at time 109 is reminiscent of a Koch Snowflake.

Section 2 quickly dispenses with the four uninteresting crystals that grow
as solid diamonds. Next, Section 3 presents a recursive description of the
Exactly 1 case, and shows that this crystal fills the plane with density2

3. Exactly
1 from a singleton produces an especially simple aperiodic pattern which we
represent as uniform tag and substitution systems in Section 4. (These two
results were mentioned without proof in [10].) Our final three sections ana-
lyze the 13, 14, and 134 crystals, respectively. In addition, Section 5 includes
discussion of the closely-related cellular automaton indexed asRule 174 in [4].

Notation
Let us now turn to the construction and notational framework for the
cellular automata we will study. OurPackard Snowflakes evolve on the two-
dimensional integer lattice, so the crystal of frozen sites belongs to the state
space

A = {finite subsetsA ⊂ Z2}.
Elements ofA will generally be denoted byu orv and represented coordinate-
wise by(x, y). The state of the crystal at timet is denoted

At = {occupied sites at timet}.
To specify whether or not a site is occupied, we writeAt(u) = 1 if u ∈ At, = 0
otherwise. Our analysis will focus on crystals started from a singleton; i.e.,
we usually setA0 = {0}. A focus of our analysis will be thefinal state

A∞ = lim
t→∞ At .
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Sitewise convergence here is automatic since Packard Snowflakessolidify,
meaning that once a cell freezes it belongs to the crystal forever.

To prescribe the dynamics ofAt , let us begin with the neighborhood of
interaction. We denote the familiar nearest neighbor norms as

‖(x, y)‖1 = |x| + |y|,
and

‖(x, y)‖∞ = max{|x|, |y|}.
This paper studies Packard Snowflakes with thevon Neumann neighborhood
of a cellu given by

∂1u = {v : ‖v − u‖1 = 1}
It will also be convenient to introduce theMoore neighborhood of u

∂∞u = {v : ||v − u||∞ = 1},
although systematic analysis of Packard Snowflakes on this latter neighbor-
hood is deferred to a future project. When the norm and neighborhood are
clear from context, we write them simply as||u|| and∂u. We also define the
neighborhood of a set of cellsA ∈ A,

∂A = {u ∈ Ac : u ∈ ∂v for somev ∈ A}.
Packard Snowflakes specify whether a site joins the crystal based on how

many occupied neighbors the site “sees.” Thus we introduce the set of sites in
∂A that seek neighbors inA as

Sk = Sk(A) = {u ∈ ∂A : #(∂u ∩ A) = k}, k = 1, . . . , 4. (1)

The solidification rules we study are transformationsτI : A → A given by

τI (A) = A ∪
⋃
i∈I

Si,

where the rule indexI ⊂ {1, 2, 3, 4} and 1∈ I. In words, a siteu joins the
crystalA if the number of occupied sitesu sees belongs toI . For convenience,
we abbreviateτ{1,3} = τ13, etc. The basic caseτ1 is often called theExactly 1
rule. We also abbreviateτ t

I (A0) = AI
t for t ≤ ∞.

It will be useful to distinguish regions ofZ2, specifically the diamond

Dt = {x : ‖x‖1 ≤ t},
and the box

Bt = {x : ‖x‖∞ ≤ t}.
Started fromA0 = {0}, the crystalsAI

t exhibit a diamond-shaped outline
at the end of each dyadic time interval (cf. Fig. 2). Thus it is particularly
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FIGURE 2
Exactly 1 from a singleton at times 3, 7, and 15.

convenient to analyze the evolution along the subsequence of timesN =
Nn = 2n − 1, comparing the population and pattern of frozen cells to those of
the full diamondDN .

Appealing to symmetry, we will inspect the portion of crystals in the first
quadrant. Hence we write, forA ∈ A,

Q(A) = {u = (x, y) : u ∈ A, x ≥ 0, y ≥ 0}.

For brevity, setQt = Q(At).
A principal goal of this paper is to compute theasymptotic density ρ for

eachτI . To this end, let us denote the population counts at dyadic times as

an = #AN, qn = #QN,

and define

ρI = lim
N→∞

an

#DN

,

whereI specifies the rule index ofτI . We will see that the limit exists in
every case. Methods from [10] can be applied in our setting to show thatρ

satisfies the general definition of asymptotic density given in that paper and is
independent of the initial finite seedA0.

The rotation T

Packard Snowflakes on the von Neumann neighborhood display diamond-
shaped features, reflecting the geometry of∂1. Rotated by 45◦ the crystal
boundaries align horizontally and vertically, making their patterns easier to
detect(see, e.g., Fig. 3). Originally motivated by computer visualization, we
will see in Section 3 that this rotationT reveals especially beautiful structure
of the Exactly 1 rule.
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FIGURE 3
The Exactly 1 crystal (left) and rotated byT (right).

Formally, let us introduce

T =
(

1 1
−1 1

)
,

which mapsZ2 to theeven checkerboard Ce = {(x, y) : x + y is even}. In
particular, note thatTDN = BN ∩ Ce.

Write τ ∗
I = T τI T

−1 for the rotated versions of theτI . Note that eachτ ∗
I is

an update rule on subsets ofCe with neighborhoods∂∗u = ∂∞u \ ∂1u. Also,
putA∗

t = τ ∗nAt , and so on. In this manner, the rotated rulesτ ∗
I and their occu-

pied setsA∗
t can be viewed as new cellular automata. SinceT is one-to-one,

#(A∗
N) = an, so applyingT does not affect population counts. We abbreviate

the portion of the rotated crystal in the first quadrant asQ∗
N = Q(A∗

N).
Iterates of theodd checkerboard Co = {(x, y) : x +y is odd} underT will

play a central role in our analysis of Exactly 1, so we will make repeated use
of the following elementary facts.

Proposition 1. Let (x, y) ∈ Z2. Then

TCo = D := {(x, y) : x odd, y odd}, (2)

TD = 2Co. (3)

Proof. To check (2), let(x, y) ∈ Co with x + y = 2n + 1 for some integern.
Then

T

(
x

y

)
=

(
2n + 1

−2x + (2n + 1)

)
,

the coordinates of which are both odd. Moreover,

T

(
m − n

m + n + 1

)
=

(
2m + 1
2n + 1

)
,

so any site with both coordinates odd is obtained from a suitable choice of
x andy.
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To check (3), let(x, y) ∈ D with x = 2m + 1 andy = 2n + 1. Then

T

(
x

y

)
= 2

(
m + n + 1

n − m

)
∈ 2Co.

Conversely,

T

(
2a − 2k − 1

2k + 1

)
=

(
2a

2(2k + 1 − a)

)

exhibits any site in 2C as the image of a site inD. �

In combination, (2) and (3) imply thatT 2Co = 2Co, T 3Co = 2D, T 4Co =
4Co, . . .. Thus for allk ≥ 0,

T 2kCo = 2kCo (4)

T 2k+1Co = 2kD. (5)

Sierpinski embedding
The familiarSierpinski lattice (or sieve, or triangle) [12] is embedded inA∞
for all the rulesτI we are considering (cf. Fig. 4). This structure is generated
as the space-time trace of the one-dimensional XOR CA with two nearest
neighbors and starting from a singleton. Vacant sites at the boundary of the
“light cone” in our Packard Snowflakes (e.g., cells within the first quadrant
along the linex + y = t at timet) see exactly two neighbors that could be
occupied. If exactly one of those neighbors is occupied, then the site solidifies
since 1∈ I for all of our rules. In particular, the crystal advances along the

FIGURE 4
Exactly 1 with embedded Sierpinski lattices in a darker shade.
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axes every update. If 2∈ I , thenτI fills the plane, as we will show below. If
k ∈ I with k ≥ 3, a site on the edge of the light cone cannot solidify by the
k rule since at most two neighbors can be occupied. Hence, in all cases with
2 /∈ I , the cells of each quadrant that solidify at light speed form a copy of the
Sierpinski lattice.

In subsequent sections we will make use of the following well-known
properties of the Sierpinski lattice in its XOR representation with neighbor set
{−1, 1}:

• At time N all odd sites in[−N, N ] are occupied.

• At time N + 1 all sites are empty except±(N + 1).

• Sites on the edge of the light cone solidify; i.e.,±t are occupied at
time t .

2 THE RULES τI , 2 ∈ I

We begin our study of von Neumann neighborhood Packard Snowflakes with
the four trivial cases such that 2∈ I ; namely, τ12, τ123, τ124, andτ1234.
Starting from a singleton these rules coverDt at timet .

Proposition 2. Suppose 2 ∈ I and A0 = {0}. Then AI∞ = Z2 and ρI = 1.

Proof. We show that for anyt ≥ 0,

At = Dt . (6)

At time t = 1 the cells ofA1 = {(0, 0), (0, 1), (1, 0), (0, −1), (−1, 0)} = D1
are frozen. Assuming (6), at timet + 1 any cell(x, y) of Q(∂Dt) satisfies
x + y = t + 1. If x = 0 or y = 0, then(x, y) has one occupied neighbor
in At at (x − 1, 0) or (y − 1, 0), respectively. Ifx, y �= 0, then(x, y) has 2
occupied neighbors at(x, y −1) and(x −1, y). In either case(x, y) solidifies.
(Note that since all cells within the light coneDt solidify due to the 1 or 2
condition, the 3 and 4 conditions are superfulous.) ThusQ(Dt+1) = Q(At+1)

By symmetry, (6) holds for allt . In particular,A∞ = Z2 andρI = 1. �

3 THE EXACTLY 1 RULE

We now derive an exact population formula for the simplest non-trivial nearest-
neighbor Packard Snowflake started from a singleton, showing that it fills the
plane with density23.

Proposition 3. For τ1, if A0 = {0} the number of occupied cells at time

N = 2n − 1 is an = 4n+1−1
3 . Hence ρ1 = 2

3 .
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Let us begin by proving the population formula for the rotated Exactly 1
rule τ ∗

1 , since this is easier to visualize, and then transform back toτ1. Recall
thatan denotes the population of the entire crystal at timeN = 2n − 1. Let
Qn = Q(A∗

Nn
) be the portion of the rotated crystal in the first quadrant,qn =

#Qn its population. By direct enumeration,a1 = 5, a2 = 21, a3 = 85, . . .;
q1 = 2, q2 = 6, q3 = 22, . . .. In fact, #Q(A∗

t ∩ DN) does not change after
time t = Nn; i.e., the final configuration onDN is attained at timeN , but we
defer the verification of this until the proposition is proved.

First, we claim thatQn+1 consists of four rigid transformations ofQn (see
Fig. 5). Assuming the claim for the moment, the three new clones ofQn branch
from the seed at(2n, 2n) in the NW, NE and SE directions. Sinceqn+1 counts
this seed only once,

qn+1 = 4qn − 2. (7)

The whole crystalAn consists of 4 copies ofQn, but the origin is counted
three too many times inan. Hence

an = 4qn − 3. (8)

Using the initial data to solve (7) and (8), we have

qn = 4n + 2

3
, an = 4n+1 − 1

3
, (9)

as desired. Since the boxBn = [−N, N ]2 has order 4n+1 sites, it follows that
the asymptotic densityρ∗

1 of the rotated crystal equals13. Applying T −1 to
recover the original orientation conserves the crystal cell count but halves the

FIGURE 5
The first quadrant of the rotated Exactly 1 crystal at time 15. The lighter cells, i.e., the new growth
from timeN3 to N4, are rigid transformations of the darker cells grown by timeN3.
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area. (T dilates the original pattern by a factor of 2 by inserting a permantently
empty cell between each pair of cells.) Henceρ1 = 2

3.
Next we prove the claimed cloning structure ofQn+1 in terms ofQn by

induction. SinceA∗
t is symmetric started from a singleton, the same analysis

applies to the other three quadrants. Let us begin with the boundaries ofQn.

Lemma 1. A∗∞ contains no cells on the x- or y-axes except the origin.

Proof. Because the dynamics within the four quadrants of the plane are sym-
metric, sites on the axes have either 0, 2, or 4 occupied neighbors at all times,
so they never join the crystal. �

Lemma 2. A∗∞ contains no cells in the rows and columns {N + 1} × [1, N ]
and [1, N ] × {N + 1}.
Proof. Since halves of two Sierpinski lattices are embedded inQ(A∗∞), cells
of {N} × [1, N ] and[1, N ] × {N} are alternately occupied and empty. Cells
in the next row and column (i.e., in[1, N ]× {N +1} and in{N +1}× [1, N ],
respectively) look to their corner neighbors and see either 0 or 2 occupied
cells. According toτ ∗

1 , these cells never join the crystal. �

Lemmas 1 and 2 determine the boundaries for the evolution ofQn, while
the following property gives rise to recursive structure. See Fig. 6.

Lemma 3. Under τ ∗
1 , a ray of occupied cells travels from (0, 0) at speed 1 in

the NE direction. That is, (t, t) joins the rotated crystal at time t .

FIGURE 6
Depiction of the three lemmas used to analyze growth ofτ∗

1 . The empty cells guaranteed by
Lemmas 1 and 2 are light gray, while the darkest cells are occupied by Lemma 3. Together these
determine the boundaries of dyadic regions.
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Proof. Observe that(1, 1) joins the crystal at times 1. Assume(t, t) joins at
time t . At this time, the light cone, i.e., the set of sites that can be affected by
the initial seed, isCt := Bt ∩Ce. Site(t + 1, t + 1), which is outside the light
cone, has only one neighbor that could be occupied: namely,(t, t). Hence, if
(t, t) is occupied at timet , then(t + 1, t + 1) joins at timet + 1 according
to τ ∗

1 . The lemma follows by induction. �

Returning to the proof of the claimed cloning process, we iterateτ ∗
1 to time

Nn. By Lemma 3, there is a new “seed,” or occupied cell, at(Nn +1, Nn +1).
By Lemma 1, there is a boundary of empty cells to the left and below this
seed (namely, in{Nn + 1} × [1, Nn] and in[1, Nn] × {Nn + 1}). Therefore,
evolution from this seed is analogous to that from the origin. More precisely,
because there are exactly the same boundary conditions as at time 0 (the row
and column of empty cells on the axes as established by Lemma 1), the crystal
will grow exactly as before within the boundaries. Because the boundary
conditions NE, NW, and SE of the seed are identical to those at the origin, the
configurationQn will be exactly copied NE, NW, and SE of the new seed.
The new squares are:

[Nn + 1, Nn + 1] × [Nn+1, Nn+1] for the NE copy,

[1, Nn + 1] × [Nn + 1, Nn+1] for the NW copy,

[Nn + 1, 1] × [Nn+1, Nn + 1] for the SE copy.

Thus, the rotated Exactly 1 rule evolves recursively as described above.
Finally, we return to the claim that underτ ∗

1 , the final configuration on
BN is attained at timeN (i.e., A∗

N = A∗∞ ∩ BN ). By symmetry, it suffices
to consider the first quadrant; empty cells guaranteed by Lemma 1 preclude
interaction across the axes.

Iterateτ ∗
1 to timeN2 = 3. At the next iteration, a new seed forms at(4, 4).

By Lemma 1, sites in the row and column to the left and below this seed (i.e.,
in [0, 3] × {4} and in{4} × [0, 3]) never joinA∞. Because the boundaries of
Q(B3) never joinA∞, sites inQ(B3) are not affected by sites outsideQ(B3)

after time 3. Evidently, sites inQ(B3) are not affected by sitesinside Q(B3)

after time 3 since one can observe that the configuration onQ(B3) at time
N2 = 3 equals the configuration onQ(B3) at timeN3 = 7. This shows that
the final configuration onB3 is attained at timeN = 3.

Next, assume the claim holds onBNn at time Nn. Again appealing to
symmetry, we consider only the first quadrant. According to the recursion of
τ ∗

1 proved above, the configuration onQ(BNn+1) consists ofQ(BNn) and three
rigid transformations ofQ(BNn). The originalQ(BNn) satisfies the claim by
the induction hypothesis. Each of the three new copies ofQ(BNn) begins from
the seed(2n, 2n) at timeNn + 1 and grows exactly asQn did from the origin
because they have the same boundaries. Hence the three copies attain their
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final configuration at timeNn+1 in the same way thatQn did at timeNn, which
completes the proof.

Since the rotationT is an isomorphism of dynamics on the∂1 and ∂∗
neighborhoods, the analogous result (9) for the Exactly 1 ruleτ1 is immediate.

4 OTHER CHARACTERIZATIONS OF A∗∞ AND A∞ FOR τ1

Started from a singleton, the final states of all Packard Snowflakes on
the von Neumann neighborhood areexactly solvable in the sense of [10].
Exactly 1, structurally the simplest (non-trivial) case, admits three alternate
representations to the recursion of the last section.

The binary rule
First, there is a simple description of sites(x, y) belonging to the final state
in terms of the binary representations ofx andy.

Proposition 4. A∗∞ satisfies the binary rule:

(x, y) is occupied iff

{
x = y = 0, or x, y �= 0 and the greatest

powers of 2 dividing x and y are the same.
(10)

Proof. By symmetry, it suffices to check (10) in the first quadrant. Lemma 1
establishes the binary rule on{x = 0 ory = 0}. It can also easily be checked
that the occupied set of the binary rule onQ(B3) agrees withQ3. Now we
assume the binary rule agrees withQn onQ(Bn) and show that it also agrees
with Qn+1 on Q(Bn+1). The square[0, 0] × [Nn, Nn] is cloned into three
squares NE, NW, and SE of the new seed by translating and rotating by 0◦,
+90◦, and−90◦, respectively, as described in Section 3. Sinceτ ∗

1 is symmetric
across thex = 0, y = 0 andy = ±x axes, the configuration in the NW
square isQn reflected across the linex = Nn. Likewise, the SE square is
Qn reflected across the liney = Nn. Thus we can choose the cloning to map
(x, y) in [0, 0]× [Nn, Nn] to (x, y)+ (ε12n, ε22n), whereε1 = ε2 = 1 for the
NE square,ε1 = 0, ε2 = 1 for the NW square, andε1 = 1, ε2 = 0 for the SE
square.

Take any(x, y) ∈ [1, 1]×[Nn, Nn]. Clearly, the greatest dyadic divisors of
bothx andy are between 1 and 2n−1. Thus, adding 2n to x or y merely puts a
1 on the left end of its binary representation. If the greatest powers of two that
dividex andy are the same (different), then after adding 2n to either or both ofx
andy, their greatest power of two divisors are still the same (different). Hence
the binary rule holds on the set[1, 1] × [Nn+1, Nn+1] \ {x = 2n or y = 2n}.

In the remaining cases, the greatest dyadic divisor of one ofx andy is 2n

and the other is at most 2n. If they both are 2n, which corresponds to the site
(2n, 2n), thenx andy share the same greatest dyadic divisor, so the site is
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occupied. (This is the “seed” mentioned in the cloning proccess earlier.) If, on
the other hand, the greatest dyadic divisor of one ofx andy is less than 2n,
then they have different greatest dyadic divisors, so the cell is empty. (This
corresponds to the boundaries of empty cells established in Lemmas 1 and 2.)
Hence the binary rule holds on all of[0, 0] × [Nn+1, Nn+1]. By induction the
rotated Exactly 1 crystalA∗

n satisfies the binary rule. �

A∗∞ in terms of dilated odd checkerboards
Next, it turns out that the union of all odd iterates of the odd checkerboardCo

underT yields the rotated Exactly 1 pattern.

Proposition 5. A∗∞ = ⋃∞
k=0 T 2k+1Co = ⋃∞

k=0 2kD.

Proof. Recall the definition ofD from Proposition 1 and observe that

2kCo = {(x, y) : (2k|x, 2k+1 � x, 2k+1|y) OR (2k|y, 2k+1 � y, 2k+1|x)},
(11)

2kD = {(x, y) : 2k|x, 2k|y, 2k+1 � x, 2k+1 � y}. (12)

In words, 2kD is the set of(x, y) such that the greatest dyadic divisor of
both x andy is 2k. By (3) the greatest dyadic divisors of both coordinates
of sites inD are 20, so multiplying both by 2k makes their greatest dyadic
divisors both 2k as claimed. Similarly, 2kCo is the set of(x, y) such that the
greatest dyadic divisor of one ofx andy is 2k and the greatest dyadic divisor of
the other is greater than 2k. Since sites inCo have one coordinate odd and the
other even, after multiplying bothx andy by 2k the greatest dyadic divisors
are again as claimed.

Now recall (4) and (5). Take any(x, y) ∈ Z2 \ {0}, and consider the
possibilities in (11) and (12). Ifx = 0 andy �= 0, then(x, y) ∈ T 2kCo =
2kCo, wherek is the greatest power of two dividingy. Likewise, ifx �= 0 and
y = 0, then(x, y) ∈ T 2kCo = 2kCo, wherek is the greatest power of two
dividing x. Otherwisex �= 0, y �= 0. Let 2m and 2n be the greatest powers of
two dividing x andy, respectively. Ifm = n, then(x, y) ∈ T 2mD = 2mD

only; if m > n, then(x, y) ∈ T 2nCo = 2nCo only; if n > m, then(x, y) ∈
T 2mCo = 2mCo only. SinceTCo = D, theT kCo partitionZ2 \ {0}.

Let A′∞ = ⋃∞
k=0 T 2kCo and B ′∞ = ⋃∞

k=0 T 2k+1Co. Then B ′∞ agrees
with the occupied set of the binary rule by (12) andA′∞ andB ′∞ also partition
Z2\{0}. We knowA∗∞ satisfies the binary rule (10), soA∗∞ = B ′∞ as desired.�

Corresponding results for the final stateA∞ of the original Exactly 1 rule
are now immediate consequences.

Corollary 1. The limit set of τ1 is A∞ = ⋃∞
k=0 T 2kCo = ⋃∞

k=0 2kCo.

Proof. Apply T −1 to Proposition 5. �
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FIGURE 7
A∞ (left) andT A∞ (right) are complementary off0.

Corollary 2. A∞ satisfies the complementary binary rule:

(x, y) is occupied iff

{
x = 0 or y = 0, or x, y �= 0 and the

greatest powers of 2 dividing x and y differ.
(13)

Proof. AbbreviateA† for the occupied set of the complementary binary rule.
We showed above that ifu ∈ T 2kCo for somek then u ∈ A†, and if
u ∈ T 2kD for somek thenu /∈ A†. Since theT 2kCo andT 2kD partition
Z2 \ 0,

⋃∞
k=0 T 2kCo = A†. By Corollary 1,A∞ = A†. �

Combining the structural properties now established, we arrive at a remark-
able inversion property forA∞ under 45◦ rotation, as illustrated in Fig. 7.

Corollary 3. The limit sets A∞ and A∗∞ of τ1 and τ ∗
1 , respectively, are

complementary away from the origin.

Proof. This is immediate from the observation above thatA′∞ and B ′∞
partitionZ2 \ 0. �

We remark that Corollary 1 provides an alternate proof thatρ1 = 2
3.

Namely, sinceA∞ = ⋃∞
k=0 T 2kCo, since applyingT 2 moves cells 4 times

further apart, and since the checkerboardCo has density1
2, the asymptotic

density ofA∞ is ρ1 = 1
2 + 1

2 · 1
4 + 1

2 · 1
42 +... = 2

3. Corollary 3 then implies

that the asymptotic densityρ∗
1 of the rotated crystal equals13.

A substitution system
In addition, the final state of Exactly 1 is generated by an extremely simple
substitution system (or L-system). The scheme forτ1 in the first quadrant is
shown in Fig. 8.

By Corollary 3, reversing black and white yields the system forτ ∗
1 , as

in Fig. 9.
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FIGURE 8
Substitution system forτ1.

FIGURE 9
Substitution system forτ∗

1 .

FIGURE 10
Evolution of the substitution system forτ1 in the first quadrant.

FIGURE 11
Evolution of the substitution system forτ∗

1 in the first quadrant.

The first four iterates of the two substitution systems are shown in Figs. 10
and 11.

To show that the scheme of Fig. 8, started from a single black cell, gener-
atesQ(A∞), we prove agreement with the complementary binary rule (13)
by induction. It is easy to check that the pattern generated by two iterations of
the substitution scheme equalsQ(B3) ∩ A∞, as shown in the middle frame
of Fig. 10. Assume next that the pattern aftern iterations agrees with (13) on
Q(BNn). Take any(x, y) in the pattern generated byn iterations of the substi-
tution system. This scheme maps(x, y) to(2x, 2y), (2x+1, 2y), (2x, 2y+1),

and(2x + 1, 2y + 1). If (x, y) is occupied, i.e., the greatest powers of two
dividingx andy differ, then the greatest powers of two dividing 2x and 2y still
differ, so(2x, 2y) is occupied. The sites(2x +1, 2y) and(2x, 2y +1) consist
of an odd and an even, so their greatest dyadic divisors differ, and hence these
sites are also occupied. The site(2x + 1, 2y + 1) consists of two odds, which
share the same greatest dyadic divisor of 1, so this site is empty. Alternatively,
if (x, y) is empty, i.e., the greatest powers of two dividingx andy are the
same, then the greatest powers of two dividing 2x and 2y are still the same,
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so(2x, 2y) is empty. The sites(2x +1, 2y) and(2x, 2y +1) consist of an odd
and an even, so their greatest dyadic divisors differ, and hence these sites are
occupied. Finally, the site(2x + 1, 2y + 1) consists of two odds, which share
the same greatest dyadic divisor of 1, so this site is empty. Agreement for all
n follows.

5 THE τ14 RULE

Let us turn to the Packard Snowflake generated byτ14. We will view this CA
as a perturbation of Exactly 1, using results from the last two sections to show
thatA14∞ = Z2. Snapshots in [2, p. 171] strongly suggest as much, although
not even a conjecture is stated explicitly there.

We start by noting that the only effect of the 4 condition inτ14 is to fill vacant
sites once they are completely surrounded by occupied neighbors. Thus, the
4 condition does not interfere with the evolution underτ1. Properly formulated,
this observation is valid for any of the Packard rules: for� ⊂ {1, 2, 3}, first
runningτ� for t − 1 steps and then “filling the holes” withτ�4 is the same as
runningτ�4 for t steps. The proof we offer is topological.

Proposition 6. For t ≥ 1 and � ⊂ {1, 2, 3}, τ t
�4 = τ�4τ

t−1
� .

To prove the proposition we will make use of the following identities:

Lemma 4. For � ⊂ {1, 2, 3},

τ�4 = τ�τ4

τ4τ�4 = τ4τ�.

Assuming the lemma for now, the proposition follows by an easy induction:

τ t+1
�4 = τ�4τ

t
�4 = τ2

�4τ
t−1
� = τ�τ4τ�4τ

t−1
� = τ�τ4τ�τ t−1

� = τ�4τ
t
�. �

Write S� = ∪i∈�Si . According to (1), to prove Lemma 4 we must show
equivalently that

S�(A) = S�(A ∪ S4(A)), (14)

S4(A) ∪ S4(A ∪ S�(A) ∪ S4(A)) = S4(A ∪ S�(A)). (15)

To this end, we derive a more basic identity.

Lemma 5. For A0, A1 ∈ A such that Ac
0 ∩ ∂A1 = ∅,

S�(A0 ∪ A1) = S�(A0) ∩ Ac
1.
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Proof. ∂(A0∪A1) = (∂A0∩Ac
1)∪(∂A1∩Ac

0). By hypothesis, and elementary
properties ofS�,

S�(A0 ∪ A1) = {x ∈ ∂A0 ∩ Ac
1 : #{∂x ∪ (A0 ∩ A1)} ∈ �}

= {x ∈ ∂A0 ∩ Ac
1 : #{y ∈ (A0 ∩ A1) : x ∈ ∂y} ∈ �}

= {x ∈ ∂A0 ∩ Ac
1 : #{y ∈ A0 : x ∈ ∂y} ∈ �}

= {x ∈ ∂A0 ∩ Ac
1 : #{∂x ∩ A0} ∈ �}

= S�(A0) ∩ Ac
1.

Note that the third equality holds sincex ∈ ∂A0 implies x ∈ Ac
0, whereas

y ∈ A1 andx ∈ ∂y imply x ∈ ∂A1, contradicting the hypothesis. �

Now to show (14), setA0 = A and A1 = S4(A) in Lemma 5. Since
∂S4(A) ⊂ A the assumption of the lemma is satisfied. Thus,

S�(A ∪ S4(A)) = S�(A) ∩ S4(A)c = S�(A) ∩ Ac = S�(A)

as desired. For (15), setA0 = A∪S�(A) andA1 = S4(A) in Lemma 5. Again
the hypothesis holds, so

S4(A ∪ S�(A) ∪ S4(A)) = S4(A ∪ S�(A)) ∩ S4(A)c = S4(A ∪ S�(A)),

this last sinceS4(A ∪ S�(A)) ⊂ S4(A)c. It remains to check thatS4(A) ⊂
S4(A ∪ S�(A)). Supposex ∈ S4(A). If x /∈ S4(A ∪ S�(A)), thenS4(A) and
S�(A)) are not disjoint, a contradiction. �

Proposition 6 lets us analyze the solidification ofA14
t by determining which

cells are added toA1
t . We can extend this analysis to the correspnding final

states by applying a simple continuity result.

Lemma 6. If At → A∞, then τ�(At ) → τ�(A∞).

Proof. Fix u ∈ Z2 and write ∂̄u = u ∪ ∂u. The convergenceAt → A∞
implies that

At ∩ ∂̄u = A∞ ∩ ∂̄u eventually int . (16)

For t such that (16) holds,

(τ�(At ))(u) = (τ�(A∞))(u).

Therefore,τ�(At ) → τ�(A∞). �

In our analysis of the Exactly 1 rule we showed that cell(x, y) is not a
member ofA1∞ if and only if x andy share the same greatest power of 2
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divisor. We also saw that the same condition characterizes membership in
AN ∩ DN . Let

x =
∞∑
i=0

2ixi , y =
∞∑

j=0

2j yj

with xi, yj ∈ {0, 1}. Suppose(x, y) /∈ A1∞. Then there existsk ≥ 0 such
that xk = yk = 1 andxi = yi = 0, for i < k. In particular, the odd-even
parities ofx andy agree. Hence the four neighbors of(x, y) have coordinates
with different parity. ThusS4(A

1∞) = (A1∞)c. Combining Proposition 6 with
Lemma 6,

A14∞ = lim
t→∞ τ t

14(A0) = lim
t→∞ τ14(τ

t−1
1 (A0)) = τ14(A

1∞) = Z2. (17)

In particular,ρ14 = 1.
In similar fashion, one can show that

A14
N+1 = DN ∪ {(±(N + 1), 0), (0, ±(N + 1))}.

Another variant of Exactly 1
Packard and Wolfram [4, Section 2] discussed a CA related to Exactly 1 that
they incorrectly identified as a solidification rule. Namely,Rule 174 (accord-
ing to their numbering scheme) is the modification ofτ1 in which a vacant
cell becomes occupied if exactly one of its four neighbors is occupied while
an occupied cell becomes empty if all four neighbors are occupied. Let us
denote this CA map asτPW and its final state from a singleton asAPW∞ . In
much the same way as for Packard Snowflakes, one can verify the analog of
Proposition 6,

τn
PW = τPWτn−1

1 . (18)

We omit the proof. Proceeding as in (17), we conclude from (18) that
APW∞ = A1∞ \ A◦∞, whereA◦∞ consists of all sites inA1∞ with four neigh-
bors inA1∞. Recall the decomposition of Corollary 1 and the complementary
binary rule of Corollary 2. Note thatCo /∈ A◦∞ since two neighbors of any site
in the odd checkerboard have both coordinates odd. Moreover, for anyk ≥ 1,
2kCo ∈ A◦∞ since the coordinates of all four neighbors of any site in the
dilated odd checkerboard have opposite parity. We conclude that Rule 174 has
asymptotic density12 andCo as its final state. One can also show that

APW
N+1 = (Co ∩ DN) ∪ {(±(N + 1), 0), (0, ±(N + 1))}.

6 THE τ13 RULE

Intriguingly, although the patterns generated byτ13 differ considerably from
those ofτ1 (cf. Fig. 12), the populations at dyadic times, and hence the
asymptotic densities, are identical.
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FIGURE 12
Comparison ofτ1 andτ13. Cell counts are both 341 after 15 iterations from a singleton.

Proposition 7. For τ13, if A0 = {0} the number of occupied cells at time

N = 2n − 1 is an = 4n+1−1
3 , and so ρ13 = 2

3 .

As we did for Exactly 1, let us begin by deriving the population formula for
the rotated ruleτ ∗

13 and then transform back toτ13. Again letan = a∗
n = #A∗

N

be the population of the entire rotated crystal at timeN , qn the population of
the portion of the rotated crystal in the first quadrant. Directly enumerating the
first few cell counts shows that they are the same as forτ ∗

1 : a1 = 5, a2 = 21,
a3 = 85, . . .; q1 = 2, q2 = 6, q3 = 22, . . . .

Once more, our strategy is to analyze the cloning of dyadic blocks. Whereas
τ1 reproduces square regions simply, the more intricate evolution ofτ13 repro-
ducestriangular regions. Thus we divideQ(BNn+1) into six lattice triangles
and one square, as shown in Fig. 13:

(I) y > 0, x < Nn, y < x;
(II) y < Nn, x > 0, y > x;

(III) y ≥ Nn + 1, x > 0, y < −x + Nn+1 + 1;
(IV) y < Nn+1 + 1, x < Nn + 1, y > −x + Nn+1 + 1;
(V) x ≥ Nn + 1, y > 0, y < −x + Nn+1 + 1;

(VI) x < Nn+1 + 1, y < Nn + 1, y > −x + Nn+1 + 1;
(VII) [Nn + 1, Nn+1] × [Nn + 1, Nn+1]

Again we abbreviateQn = Q(A∗
Nn

). Whereas forτ1 we used the configura-
tion on a square,Qn, as the fundamental cloning object, forτ13 we instead use
the configuration in triangular region I. We claim thatQn+1 consists of eight
rigid transformations of the configuration in I and four rigid transformations
of the diagonaly = x (0 ≤ x ≤ Nn), with some overlap (cf. Fig. 13).

Denote the population in each of the seven regions aspI = #(A∗∞ ∩ I ),
etc., and letd = N +1 be the population of the diagonaly = x (0 ≤ x ≤ Nn).
By symmetry,pI = pII , soqn = 2pI + d.

Due to the embedded Sierpinski Lattice, the lines[0, N ] × {N} and
{N} × [0, N ] consist of alternating occupied and empty cells. Underτ ∗

13,
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FIGURE 13
Seven regions for the analysis ofτ13.

these boundaries bahave equivalently to empty rows. At timeN + 1 a seed
forms at(N + 1, N + 1), which belongs to region VII only. By reasoning
similar to that for Lemma 1,Qn (i.e., the configuration on the union of
regions I, II, and the diagonal adjoining them) copies exactly into region VII.
Since after timeN + 1 theN × N squares NW and SE of the seed evolve
for time N with boundary conditions equivalent to those at the origin at
time 0, a solid diagonal advances at lightspeed in both directions along the
line y = −x + Nn+1 + 1. Since the seed(N + 1, N + 1) belongs to VII,
the population of the two diagonals separating III from IV and V from VI is
2d − 2. Henceqn+1 = 4pI + 2d + pIII + pIV + pV + pVI + 2d − 2.

Since the segments[0, N ]× {N} and{N}× [0, N ] behave like boundaries
of empty cells under the 1 or 3 rule, the boundary conditions for growth into
regions III and V starting at the seed(N + 1, N + 1) are identical to the
conditions for growth into I and II starting from(1, 1) at time 1. However, the
boundary conditions for growth into IV and VI starting from(N + 1, N + 1)

are identical to the conditions starting from(0, 0) at time 0 growing into
regions I and II. Because of this, the configurations on triangles III and V
are shifted by(+1, −1) and(−1, +1), respectively. In other words, one can
imagine that the growth into region I from the seed(0, 0) is identical to the
growth into III from a seed at(Nn +2, Nn) rather than from(Nn +1, Nn +1).
Likewise, the growth into region I from(0, 0) is identical to the growth into
V from (Nn, Nn + 2). These shifts do not affect the population of the rigid
transformations of the configuration in region I. HencepI = pIII = pIV =
pV = pVI .
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Putting all this together, we obtain

qn+1 = 8pI + 4d − 2 = 4(2pI + d) − 2

= 4qn − 2.

This difference equation and initial data are the same as for Exactly 1, so again
(8) and (9) hold in the new setting and the asymptotic densities of the rotated
rule τ ∗

13 and original ruleτ13 are 1
3 and 2

3, respectively.
The proof by induction of the recursive evolution forτ ∗

13 is analogous to the
proof for τ ∗

1 , so we will skip the details. The boundary conditions described
above determine the growth within triangles III through VI.

7 THE τ134 RULE

To conclude the paper we turn to the final Packard Snowflake on the von
Neumann neighborhood, generated byτ134. We view this case as a perturbation
of τ13, just as we consideredτ14 a perturbation ofτ1. By Proposition 6,

τ t
134 = τ134τ

t−1
13 .

Thus we can determineA134∞ by filling in the holes inA13∞. Moreover, the
boundary conditions for evolution ofτ13 in regions I–VII and the cloning
structure within those regions can be verified forτ134 in the same way. How-
ever, the population ofτ134 has extra contributions from the 4 condition along
“seams” between regions I and V, between regions II and III, and at four
additional sites (cf. Fig. 14).

Let qn be the quadrant population count ofτ134, pI the count in region
I, andd = N + 1 the diagonal population as in the previous section. Now
qn = 2pI + d + 2, since additional cells are added at(2, 0) and(0, 2) by the
4 condition. The modified recursion is

qn+1 = 8pI + (4d − 2) + (sn + 4), (19)

wheresn+4 represents the contribution from sites along the above-mentioned
seams and four additional sites. Simplifying, we getqn+1 = 4qn + sn − 6.

A final lemma now evaluates the seam correction.

Lemma 7. There are 2n−1occupied sites forming a period 2 sequence along
the boundary of Qn that are candidates to fill in by the 4 condition, but 2n−1
of these are already filled in by τ13. Thus sn = 2n − 2n.

Proof. The seamsy = Nn + 1, 0 ≤ x ≤ Nn + 1; andx = Nn + 1, 0 ≤ y ≤
Nn +1 have a total of 2n+1−1 cells. Due to the shifted recursion forτ13, there
are cells alternating between occupied and empty on both sides of the seams.
However, the 2n−1 cells at(Nn +2−2i , Nn +1) and(Nn +1, Nn +2−2i ),
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FIGURE 14
Cells added by the 4 condition ofτ134are darker. These boundary cells are added on every dyadic
scale, then reproduced by the cloning process.

where 0≤ i < n, are already filled in byτ13, due to the embedding of the
Sierpinski lattice. This leaves(2n −1)− (2n−1) previously empty cells with
four occupied neighbors that fill by the 4 condition, as claimed. �

Therefore

qn+1 = 4qn + 2n − 2n − 6,

which has solution

qn = 29

72
4n − 2n−1 + 2

3
n + 20

9
.

The crystal size isan = 4qn − 7 because the 4 added cells on the axes are
double counted and the origin is counted 3 times too many. It follows that

an = 29

18
4n − 2n+1 + 8

3
n + 17

9
,

and the asymptotic density of the rotated ruleτ ∗
134 and original ruleτ134 are

ρ∗
134 = 29

72 andρ134 = 29
36, respectively.

In closing, we note thatρ134 = 29
36 is lower thanρ14 = 1 even though

cells join the crystal with the former density in an additional case. The lack
of monotonicity in nontrivial Packard Snowflakes that produces their exotic
structure also accounts for surprises such as this.
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