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In 1984, Packard [1] introduced simple planar cellular automata to emulate
the growth of snow crystals. Thefackard Showflakes have since been
popularized by S. Wolfram and others, most recently in [2]. The present
paper provides a rigorous analysis of the simplest examples: those with
nearest neighbor interaction on the two-dimensional integers. In each case
we determine the asymptotic density with which the spreading crystal fills
the plane. For the baskxactly 1 rule started from a singleton, we establish
alternate representations of the final state as a uniform tag system and as a
substitution system.
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uniform tag system, substitution system.

1 PRELIMINARIES

Introduction

Snow crystals have inspired mathematical modeling for more than a century,
dating back at least as far as the early fractal known as the Koch Snowflake [3].
The details of real snowflake growth, whereby water vapor gradually freezes to
form the growing crystal, are still poorly understood. An extremely simple pro-
totype for planar growth was proposed by Packard [1]. In his cellular automa-
ton (CA) model, eacleell (or site) of a planar lattice changes from empty to
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occupied as that location turns to ice and remains occupied thereafter. A cell
“freezes”whenithas one frozen neighbor, or when the number of frozen neigh-
bors equals some prescribed higher count. Cells of the original 1984 model had
six nearest neighbors, reflecting the hexagonal molecular structure of ice and
observed symmetry of actual snow crystals. Subsequenct studies [2,4] include
simulations on the two-dimensional interg@%with 4 and 8 nearest neigh-
bors, the so-calledon Neumann andMoore neighborhoods, respectively.

As they grow, hexagonal Packard Snowflakes develop intricate patterns
reminscient of real snowflakes (cf. Fig. 8 of [5]). Indeed, Wolfram and others
have argued (e.g., in [6,7], and [2]) that the similarity demonstrates the ability
of simple local interactions to capture essential features of complex natural
processes. Recent advances in our understanding of real snow crystal growth,
however, make it clear that the Packard rules evolve in a very different manner
than do the sectored plates they ressemble at certain stages of development.
More realistic lattice algorithms, based on physical principles, are currently
being developed by Gravner and Griffeath [5, 8]; see those articles for an
extensive bibliography of the modeling literature.

Despite their limited realism, the Packard rules are basic cellular automata
with fascinating properties. Wolfram has described the patterns they gener-
ate as “intricate, if very regular” [2, p. 171]. Gravner and Griffeath [9] first
provided a precise analysis of a Packard Snowflake on the Moore neighbor-
hood and proved that it fills the plane with asymptotic denéityheir more
recent paper [10] gives quite a complete rigorous treatment of all the original,
hexagonal Packard rules.

Our objective here is to present a corresponding mathematical description
for all Packard automata with the most elementary neighborhood structure:
the von Neumann case. We will focus on the evolution of crystals started from
a singleton, derivation of exact formulas for their cell counts at dyadic times,
and calculation of asymptotic densities with which they fill the plane. Figure 1
shows a still frame of th&xactly 1 Packard Snowflake that will be the fea-
tured example of our study. Amore general analysis of asymptotic density from
arbitrary finite initial seeds can be carried out using the methods of [10]. Tech-
niques from that paper also apply to the description of macroscopic dynamics.

While mathematically rigorous, our results have been obtained after exten-
sive experimentation. This project would not have been possible without the
aid of an interactive CA simulator for visualization and data analysis. We are
gratefulto Mirek Wojtowicz for creating thdCell software [11] used through-
out our research and for all the figures included here. Likewise, the reader
should consideMCell (or some such simulator) indispensible for careful
study of our work.

The paper is organized as follows. In the remainder of this Introduction, we
formalize the cellular automata we will study, describe a simple transforma-
tion T that plays a key role in our analysis, and then review the familiar
Serpinski lattice embedded within the evolution of Packard Snowflakes.
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FIGURE 1
Exactly 1 at time 109 is reminiscent of a Koch Snowflake.

Section 2 quickly dispenses with the four uninteresting crystals that grow
as solid diamonds. Next, Section 3 presents a recursive description of the
Exactly 1 case, and shows that this crystalfills the plane with de@slﬁyactly

1 from a singleton produces an especially simple aperiodic pattern which we
represent as uniform tag and substitution systems in Section 4. (These two
results were mentioned without proof in [10].) Our final three sections ana-
lyze the 13, 14, and 134 crystals, respectively. In addition, Section 5 includes
discussion of the closely-related cellular automaton index&udl@l 74 in [4].

Notation
Let us now turn to the construction and notational framework for the
cellular automata we will study. Otackard Showflakes evolve on the two-
dimensional integer lattice, so the crystal of frozen sites belongs to the state
space

A = {finite subsets\ C Z?}.

Elements ofA will generally be denoted hy or v and represented coordinate-
wise by(x, y). The state of the crystal at times denoted

A, = {occupied sites at timg.
To specify whether or not a site is occupied, we wht€u) = 1ifu € A;,=0
otherwise. Our analysis will focus on crystals started from a singleton; i.e.,

we usually sedg = {0}. A focus of our analysis will be thénal state

—>00



60 CHARLES D. BRUMMITT €t al.

Sitewise convergence here is automatic since Packard Snow#alkdisy,
meaning that once a cell freezes it belongs to the crystal forever.

To prescribe the dynamics of;, let us begin with the neighborhood of
interaction. We denote the familiar nearest neighbor norms as

G, Wl = x|+ |yl
and
G, W lloo = Max{|x|, |y}

This paper studies Packard Snowflakes withvtreNeumann neighborhood
of a cellu given by
u={v:llv—uli=1

It will also be convenient to introduce ttéoore neighborhood of u
3%u ={v:|lv—ulle = 1},

although systematic analysis of Packard Snowflakes on this latter neighbor-
hood is deferred to a future project. When the norm and neighborhood are
clear from context, we write them simply 88| anddu. We also define the
neighborhood of a set of cells € A,

0A ={u € A° : u € dv for somev € A}.

Packard Snowflakes specify whether a site joins the crystal based on how
many occupied neighbors the site “sees.” Thus we introduce the set of sites in
9 A that see neighbors inA as

Sp = Si(A) = {u cdA : #@OuNnA) =k}, k=1,...,4 (1)

The solidification rules we study are transformatiopns A — A given by

77(A) = AU U S;,
iel
where the rule indeX C {1, 2, 3,4} and 1< I. In words, a site: joins the
crystalA if the number of occupied sitessees belongs tb. For convenience,
we abbreviatey; 3) = 713, etc. The basic casg is often called thé&xactly 1
rule. We also abbreviatg (Ag) = Al fort < co.
It will be useful to distinguish regions &?2, specifically the diamond

Dy = {x:|xll1 =1},

and the box
By ={x:|xlloc =t}

Started fromAg = {0}, the crystalsA! exhibit a diamond-shaped outline
at the end of each dyadic time interval (cf. Fig. 2). Thus it is particularly
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FIGURE 2
Exactly 1 from a singleton at times 3, 7, and 15.

convenient to analyze the evolution along the subsequence of fimes
N, = 2" — 1, comparing the population and pattern of frozen cells to those of
the full diamondDy .

Appealing to symmetry, we will inspect the portion of crystals in the first
guadrant. Hence we write, far € A,

QA)=fu=(x,y):uecA x=0y=0}

For brevity, setQ; = Q(A;).
A principal goal of this paper is to compute thsymptotic density p for
eachr;. To this end, let us denote the population counts at dyadic times as

a, =#AN, qn =#OW,

and define
= lim -2
o1 = N #Dy

wherel specifies the rule index of;. We will see that the limit exists in
every case. Methods from [10] can be applied in our setting to showthat
satisfies the general definition of asymptotic density given in that paper and is
independent of the initial finite seeth.

Therotation T

Packard Snowflakes on the von Neumann neighborhood display diamond-
shaped features, reflecting the geometnypbf Rotated by 45 the crystal
boundaries align horizontally and vertically, making their patterns easier to
detect(see, e.g., Fig. 3). Originally motivated by computer visualization, we
will see in Section 3 that this rotatidh reveals especially beautiful structure

of the Exactly 1 rule.
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FIGURE 3
The Exactly 1 crystall¢ft) and rotated by (right).

Formally, let us introduce

1 1
=(4)

which mapsZ? to theeven checkerboard C, = {(x, y) : x + y is even. In
particular, note thaiDy = By N C,.

Writet/ =Tt 71 for the rotated versions of the. Note that each; is
an update rule on subsets@f with neighborhood$*u = 3u \ 91u. Also,
putAy = t** A;, and so on. In this manner, the rotated rulpand their occu-
pied setsA} can be viewed as new cellular automata. Sifide one-to-one,
#(A}) = a,, SO applyingl’ does not affect population counts. We abbreviate
the portion of the rotated crystal in the first quadranQgs = Q(A}).

Iterates of thedd checkerboard C, = {(x, y) : x + y is odd} underT will
play a central role in our analysis of Exactly 1, so we will make repeated use
of the following elementary facts.

Proposition 1. Let (x, y) € Z2. Then

TC, = D := {(x, y) : x odd, y odd}, (2)
TD = 2C,. 3)

Proof. To check (2), letx, y) € C, with x + y = 2n + 1 for some integex.
Then
(%) = 2n+1
y)  \—2x+(2n+1))°
the coordinates of which are both odd. Moreover,
T m-—n _(2m+1
m+n+1) \2n4+1)°

so any site with both coordinates odd is obtained from a suitable choice of
x andy.
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To check (3), letx, y) € D withx = 2m + 1 andy = 2n + 1. Then

T<x>=2<m+”+1> € 2C,.
y n—m

T 2a — 2k — 1\ 2a
2k+1 T \22k+1-a)
exhibits any site in 2 as the image of a site iD. a

In combination, (2) and (3) imply that’C, = 2C,, T3C, = 2D, T*C, =
4C,, .... Thus for allk > 0,

Conversely,

T%#c, =2"c, (4)
T%+c, = 2*D. (5)

Sierpinski embedding

The familiarSerpinski lattice (or sieve, ortriangle) [12] is embedded im

for all the rulest; we are considering (cf. Fig. 4). This structure is generated
as the space-time trace of the one-dimensional XOR CA with two nearest
neighbors and starting from a singleton. Vacant sites at the boundary of the
“light cone” in our Packard Snowflakes (e.g., cells within the first quadrant
along the linex + y = r at timet) see exactly two neighbors that could be
occupied. If exactly one of those neighbors is occupied, then the site solidifies
since 1e [ for all of our rules. In particular, the crystal advances along the

FIGURE 4
Exactly 1 with embedded Sierpinski lattices in a darker shade.
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axes every update. If 2 I, thent; fills the plane, as we will show below. If
k € I with k > 3, a site on the edge of the light cone cannot solidify by the
k rule since at most two neighbors can be occupied. Hence, in all cases with
2 ¢ I, the cells of each quadrant that solidify at light speed form a copy of the
Sierpinski lattice.

In subsequent sections we will make use of the following well-known
properties of the Sierpinski lattice in its XOR representation with neighbor set
{—1, 1}

e Attime N all odd sites iM—N, N] are occupied.
e Attime N + 1 all sites are empty exceft(N + 1).

e Sites on the edge of the light cone solidify; i.e; are occupied at
timer.

2 THERULESt,2€1

We begin our study of von Neumann neighborhood Packard Snowflakes with
the four trivial cases such that 2 I; namely, t12, T123, 1124, andt1234
Starting from a singleton these rules co¥grat timez.

Proposition 2. Suppose2 e I and Ag = {0}. Then AL, = Z? and p; = 1.

Proof. We show that for any > 0,
A; = Dy. (6)

Attimer = 1thecellsofd; = {(0, 0), (0, 1), (1, 0), (0, —-1), (—1,0)} = D,
are frozen. Assuming (6), at tinre 1 any cell(x, y) of Q(dD,) satisfies
x+y=t+1Ifx =0o0ry = 0, then(x, y) has one occupied neighbor
in A; at(x — 1,0) or (y — 1, 0), respectively. Ifx, y # 0, then(x, y) has 2
occupied neighbors &t, y — 1) and(x — 1, y). In either caséx, y) solidifies.
(Note that since all cells within the light corg, solidify due to the 1 or 2
condition, the 3 and 4 conditions are superfulous.) TOUB; 1) = O(A;+1)
By symmetry, (6) holds for all. In particular,A, = Z2 andp; = 1. o

3 THE EXACTLY 1RULE

We now derive an exact population formula for the simplest non-trivial nearest-
neighbor Packard Snowflake started from a singleton, showing that it fills the
plane with density2.

Proposition 3. For t1, if Ag = {0} the number of occupied cells at time

. 4n+171 2
N=2"-1lisa, = =5—=.Hencep; = 5.
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Let us begin by proving the population formula for the rotated Exactly 1
rule z;, since this is easier to visualize, and then transform back tRecall
thata, denotes the population of the entire crystal at tihe= 2" — 1. Let
0, = Q(A*Nn) be the portion of the rotated crystal in the first quadrant=
#Q, its population. By direct enumeration; = 5, a2 = 21,a3 = 85, .. ;
q1 = 2,92 = 6,93 = 22,.... Infact, #2(A; N Dy) does not change after
timer = N,; i.e., the final configuration oPy is attained at timeV, but we
defer the verification of this until the proposition is proved.

First, we claim thaD,, 1 consists of four rigid transformations ¢f, (see
Fig. 5). Assuming the claim for the moment, the three new clonéx,difranch
from the seed at2”, 2") in the NW, NE and SE directions. Singg, 1 counts
this seed only once,

Gn+1 =4, — 2. (7)

The whole crystald, consists of 4 copies of),,, but the origin is counted
three too many times in,,. Hence

an =4q, — 3. (8)
Using the initial data to solve (7) and (8), we have

4v 42 g+l
Gh=—F " =7, 9)

as desired. Since the bd = [—N, N2 has order 4t sites, it follows that
the asymptotic density; of the rotated crystal equa% Applying 71 to
recover the original orientation conserves the crystal cell count but halves the

FIGURE 5
The first quadrant of the rotated Exactly 1 crystal at time 15. The lighter cells, i.e., the new growth
from time N3 to Ny, are rigid transformations of the darker cells grown by tiNe
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area. { dilates the original pattern by a factor of 2 by inserting a permantently
empty cell between each pair of cells.) Henge= %

Next we prove the claimed cloning structure @f 1 in terms of Q,, by
induction. SinceA; is symmetric started from a singleton, the same analysis
applies to the other three quadrants. Let us begin with the boundarigs of

Lemma l. A} containsno cells on the x- or y-axes except the origin.

Proof. Because the dynamics within the four quadrants of the plane are sym-
metric, sites on the axes have either 0, 2, or 4 occupied neighbors at all times,
so they never join the crystal. ]

Lemma2. A%, contains no cellsin the rows and columns {N + 1} x [1, N]
and [1, N] x {N +1}.

Proof. Since halves of two Sierpinski lattices are embedded(A},), cells

of {N} x [1, N] and[1, N] x {N} are alternately occupied and empty. Cells
in the next row and column (i.e., 4, N] x {N +1}and in{N + 1} x [1, N],
respectively) look to their corner neighbors and see either 0 or 2 occupied
cells. According tary, these cells never join the crystal. a

Lemmas 1 and 2 determine the boundaries for the evolutiap,ofwvhile
the following property gives rise to recursive structure. See Fig. 6.

Lemma 3. Under 77, aray of occupied cellstravelsfrom (0, 0) at speed 1 in
the NE direction. That is, (¢, ¢) joins the rotated crystal at time¢.

FIGURE 6

Depiction of the three lemmas used to analyze growthjofThe empty cells guaranteed by
Lemmas 1 and 2 are light gray, while the darkest cells are occupied by Lemma 3. Together these
determine the boundaries of dyadic regions.
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Proof. Observe thatl, 1) joins the crystal at times 1. Assungg ¢) joins at
timet. At this time, the light cone, i.e., the set of sites that can be affected by
the initial seed, i€, := B, N C,. Site(r + 1, t + 1), which is outside the light
cone, has only one neighbor that could be occupied: narGiely, Hence, if

(t, 1) is occupied at time, then(s + 1, ¢ + 1) joins at timer + 1 according

to z;'. The lemma follows by induction. O

Returning to the proof of the claimed cloning process, we iterate time
N,. By Lemma 3, there is a new “seed,” or occupied cel(dt+ 1, N, +1).
By Lemma 1, there is a boundary of empty cells to the left and below this
seed (namely, ifiN, + 1} x [1, N,] and in[1, N,,] x {N,, + 1}). Therefore,
evolution from this seed is analogous to that from the origin. More precisely,
because there are exactly the same boundary conditions as at time O (the row
and column of empty cells on the axes as established by Lemma 1), the crystal
will grow exactly as before within the boundaries. Because the boundary
conditions NE, NW, and SE of the seed are identical to those at the origin, the
configurationQ,, will be exactly copied NE, NW, and SE of the new seed.
The new squares are:

[Ny +1, N, + 1] x [Ny+1, Nyy1] for the NE copy,
[1, N, + 1] x [N, + 1, N,y1] for the NW copy,
[N, + 1, 1] x [Ny4+1, N, +1] for the SE copy.

Thus, the rotated Exactly 1 rule evolves recursively as described above.

Finally, we return to the claim that undef, the final configuration on
By is attained at timeV (i.e., Ay, = A%, N By). By symmetry, it suffices
to consider the first quadrant; empty cells guaranteed by Lemma 1 preclude
interaction across the axes.

Iterater; to time N2 = 3. Atthe next iteration, a new seed formg4t4).

By Lemma 1, sites in the row and column to the left and below this seed (i.e.,
in [0, 3] x {4} and in{4} x [0, 3]) never joinA.. Because the boundaries of
Q(B3) never joinA ., sites inQ (B3) are not affected by sites outsidi Bs)

after time 3. Evidently, sites i@ (B3) are not affected by sitéaside Q(B3)

after time 3 since one can observe that the configuratio® GBg) at time

N> = 3 equals the configuration a@(B3) at time N3 = 7. This shows that

the final configuration omB3 is attained at timev = 3.

Next, assume the claim holds @y, at time N,. Again appealing to
symmetry, we consider only the first quadrant. According to the recursion of
7, proved above, the configuration @By, . ,) consists o0 (By, ) and three
rigid transformations of2 (By, ). The originalQ(By,) satisfies the claim by
the induction hypothesis. Each of the three new copig(dy, ) begins from
the seed?2", 2") attimeN,, + 1 and grows exactly ag,, did from the origin
because they have the same boundaries. Hence the three copies attain their
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final configuration at timev,, ;1 in the same way tha®,, did at timen,,, which
completes the proof.

Since the rotatiorf" is an isomorphism of dynamics on tl3é and 9*
neighborhoods, the analogous result (9) for the Exactly 1muimmediate.

4 OTHER CHARACTERIZATIONSOF A%, AND A, FOR 71

Started from a singleton, the final states of all Packard Snowflakes on
the von Neumann neighborhood aeactly solvable in the sense of [10].
Exactly 1, structurally the simplest (non-trivial) case, admits three alternate
representations to the recursion of the last section.

Thebinary rule

First, there is a simple description of sites y) belonging to the final state
in terms of the binary representationsxafindy.

Proposition 4. A% satisfies the binary rule:

x =y =0, 0r x,y # 0and the greatest

(x, y) isoccupied iff .
powers of 2 dividing x and y are the same.

(10)

Proof. By symmetry, it suffices to check (10) in the first quadrant. Lemma 1
establishes the binary rule ¢m = 0 or y = 0}. It can also easily be checked
that the occupied set of the binary rule 9{B3) agrees withQ3. Now we
assume the binary rule agrees widh on Q(B,) and show that it also agrees
with Q,+1 on Q(B,+1). The squard0, 0] x [N,, N,] is cloned into three
squares NE, NW, and SE of the new seed by translating and rotating, by 0
+90°, and—-90°, respectively, as described in Section 3. Sirjcis symmetric
across ther = 0, y = 0 andy = +x axes, the configuration in the NW
square isQ, reflected across the line = N,,. Likewise, the SE square is
0, reflected across the line= N,.. Thus we can choose the cloning to map
(x, y)in [0, O] x [Ny, N,]to (x, y) + (12", €22"), wheree; = €2 = 1 for the
NE square¢; = 0, e2 = 1 for the NW square, angh = 1, ¢, = O for the SE
square.

Take any(x, y) € [1, 1] x [N,, N, ]. Clearly, the greatest dyadic divisors of
bothx andy are between 1 and'2L. Thus, adding2to x or y merely puts a
1 on the left end of its binary representation. If the greatest powers of two that
dividex andy are the same (different), then after addifg®either or both of
andy, their greatest power of two divisors are still the same (different). Hence
the binary rule holds on the sgt, 1] x [N,+1, Np+1] \ {x = 2" ory = 2"}

In the remaining cases, the greatest dyadic divisor of onearfdy is 2"
and the other is at most 2If they both are 2, which corresponds to the site
(2", 2"), thenx andy share the same greatest dyadic divisor, so the site is
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occupied. (This is the “seed” mentioned in the cloning proccess earlier.) If, on
the other hand, the greatest dyadic divisor of one aehdy is less than 2

then they have different greatest dyadic divisors, so the cell is empty. (This
corresponds to the boundaries of empty cells established in Lemmas 1 and 2.)
Hence the binary rule holds on all (ff, 0] x [N,,+1, N,+1]. By induction the
rotated Exactly 1 crystad’ satisfies the binary rule. a

A% intermsof dilated odd checkerboards
Next, it turns out that the union of all odd iterates of the odd checkert@ard
underT yields the rotated Exactly 1 pattern.

Proposition 5. A%, = [J;lo T#H1C, = U 26D.

Proof. Recall the definition oD from Proposition 1 and observe that

2Co = {(x,y) : (2x, 24§ x, 26FL1y) OR (2y, 2641 4y, 261 x)),
(11)

2D = {(x, y) : 2F|x, 2|y, 2L f x, 2L} ). (12)

In words, 2D is the set of(x, y) such that the greatest dyadic divisor of
bothx andy is 2. By (3) the greatest dyadic divisors of both coordinates
of sites inD are 2, so multiplying both by ® makes their greatest dyadic
divisors both 2 as claimed. Similarly, &, is the set of(x, y) such that the
greatest dyadic divisor of one pfandy is 2° and the greatest dyadic divisor of
the other is greater tharf 2Since sites irC, have one coordinate odd and the
other even, after multiplying both andy by 2* the greatest dyadic divisors
are again as claimed.

Now recall (4) and (5). Take angr,y) € Z2\ {0}, and consider the
possibilities in (11) and (12). If = 0 andy # 0, then(x, y) € T%C, =
2kC,, wherek is the greatest power of two dividing Likewise, ifx # 0 and
y = 0, then(x, y) € T%C, = 2*C,, wherek is the greatest power of two
dividing x. Otherwisex # 0, y # 0. Let 2" and Z be the greatest powers of
two dividing x andy, respectively. lfn = n, then(x, y) € T?"D = 2"D
only; if m > n, then(x, y) € T?'C, = 2"C, only; if n > m, then(x, y) €
T2"C, = 2"C, only. SinceTC, = D, theT*C, partitionZ? \ {0}.

Let AL, = UpoT#C, and B, = 2o T**1C,. Then B, agrees
with the occupied set of the binary rule by (12) atig and B/, also partition
72\ {0}. We knowA? satisfies the binary rule (10), 8d,, = B/, as desired]

Corresponding results for the final statg, of the original Exactly 1 rule
are now immediate consequences.

Corollary 1. Thelimit set of 71 iS Aso = U2 g T Co = U2 2¢C,.

Proof. Apply 71 to Proposition 5. O
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FIGURE 7
Ao (left) andT A (right) are complementary off.

Corollary 2. A satisfies the complementary binary rule:

x=0o0ry=0,0rx,y # 0andthe

(x, y) isoccupied iff 0 )
greatest powers of 2 dividing x and y differ.

(13)

Proof. AbbreviateAT for the occupied set of the complementary binary rule.
We showed above that if € T%C, for somek thenu e AT, and if
u € T%D for somek thenu ¢ A'. Since theT?C, and 7% D partition
72\ 0, U2 T?%C, = AT. By Corollary 1,A,, = A™. m

Combining the structural properties now established, we arrive at aremark-
able inversion property fad ., under 45 rotation, as illustrated in Fig. 7.

Corollary 3. The limit sets Ay, and A%, of 71 and zj, respectively, are
complementary away from the origin.

Proof. This is immediate from the observation above th and B[,
partitionZ? \ 0. o

We remark that Corollary 1 provides an alternate proof that= %

Namely, sincedo, = Ureo T%(C,, since applyingl'?> moves cells 4 times
further apart, and since the checkerboéydhas density:—zL, the asymptotic
density of Ao iSp1 =3+ 3 5 + 3 - 2+... = 3. Corollary 3 then implies
that the asymptotic densigy; of the rotated crystal equa%

A substitution system
In addition, the final state of Exactly 1 is generated by an extremely simple
substitution system (or L-system). The scheme fot; in the first quadrant is
shown in Fig. 8.

By Corollary 3, reversing black and white yields the systemdpr as
in Fig. 9.



PACKARD SNOWFLAKES 71

FIGURE 8

Substitution system for; .

M- | "
FIGURE 9

Substitution system fory".

FIGURE 10
Evolution of the substitution system fey in the first quadrant.

FIGURE 11
Evolution of the substitution system fof in the first quadrant.

The first four iterates of the two substitution systems are shown in Figs. 10
and 11.

To show that the scheme of Fig. 8, started from a single black cell, gener-
atesQ(Ax), we prove agreement with the complementary binary rule (13)
by induction. Itis easy to check that the pattern generated by two iterations of
the substitution scheme equalk B3) N A, as shown in the middle frame
of Fig. 10. Assume next that the pattern afidterations agrees with (13) on
Q(By,). Take any(x, y) in the pattern generated lyiterations of the substi-
tution system. This scheme maps y) to (2x, 2y), (2x+1, 2y), (2x, 2y+1),
and(2x + 1,2y + 1). If (x, y) is occupied, i.e., the greatest powers of two
dividing x andy differ, then the greatest powers of two dividing&nd 2 still
differ, so(2x, 2y) is occupied. The site@x + 1, 2y) and(2x, 2y + 1) consist
of an odd and an even, so their greatest dyadic divisors differ, and hence these
sites are also occupied. The 5i&x + 1, 2y 4+ 1) consists of two odds, which
share the same greatest dyadic divisor of 1, so this site is empty. Alternatively,
if (x,y) is empty, i.e., the greatest powers of two dividingnd y are the
same, then the greatest powers of two dividingad 2 are still the same,
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S0(2x, 2y) is empty. The site€@x + 1, 2y) and(2x, 2y + 1) consist of an odd

and an even, so their greatest dyadic divisors differ, and hence these sites are
occupied. Finally, the sit€2x + 1, 2y + 1) consists of two odds, which share

the same greatest dyadic divisor of 1, so this site is empty. Agreement for all
n follows.

5 THE 714 RULE

Let us turn to the Packard Snowflake generated;hyWe will view this CA
as a perturbation of Exactly 1, using results from the last two sections to show
that A% = 72, Snapshots in [2, p. 171] strongly suggest as much, although
not even a conjecture is stated explicitly there.

We start by noting that the only effect of the 4 conditiom4nis to fill vacant
sites once they are completely surrounded by occupied neighbors. Thus, the
4 condition does not interfere with the evolution undetProperly formulated,
this observation is valid for any of the Packard rules: forc {1, 2, 3}, first
runningzy for ¢ — 1 steps and then “filling the holes” witt) 4 is the same as
runningz4 for ¢ steps. The proof we offer is topological.

Proposition 6. Forr > 1and A C {1,2,3}, 7}, = TpaTi L.
To prove the proposition we will make use of the following identities:
Lemmad. For A C {1, 2, 3},
TA4 = TATS
TATAL = T4TA.
Assuming the lemma for now, the proposition follows by an easy induction:

t+1 t 2 _t—1 t—1 -1 t
TA4 = TA4TpAq = ‘L'A4‘L'A = ‘L’AT4‘L’A4‘L’A = ‘L’A‘L'4‘L'A‘L'A = TA4ATH) - O

Write Sp = U;ea S;. According to (1), to prove Lemma 4 we must show
equivalently that

SA(A) = SA(A U S4(A)), (14)
S4(A) U S4(A U SA(A) U S4(A)) = Sa(A U Sp(A)). (15)

To this end, we derive a more basic identity.

Lemmab. For Ag, A1 € Asuchthat AgNdA; = o,

Sa(ApgU Ap) = Sp(Ag) N Af.
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Proof. 3(AgUA1) = (0ApNAJ)U(dA1NAR). By hypothesis, and elementary
properties ofS,,
Sa(AgU A1) = {x € Ao N Af : #{dx U (AgN A1)} € A}
={x €dAgN A #y € (AoN A1) :x € dy} € A}
={x €dAgNA] :#{y € Ap:x € dy} € A}
={x € Ao N A : #{dx N Ag} € A}
= SaA(Ag) N AS.

Note that the third equality holds sinaee 9Ag impliesx € A, whereas
y € A1 andx € dy imply x € A1, contradicting the hypothesis. O

Now to show (14), sedig = A and A; = S4(A) in Lemma 5. Since
954(A) C A the assumption of the lemma is satisfied. Thus,

Sa(A U S4(A)) = SA(A) N S4(A) = SA(A) NA® = Sx(A)

as desired. For (15), sap = AUSA (A) andA; = S4(A) in Lemma 5. Again
the hypothesis holds, so

Sa(A U SA(A) U Sa(A)) = Sa(A U S5 (A)) N Sa(A)° = Sa(A U Sp(A)),

this last sinceS4(A U SA(A)) C S4(A). It remains to check thaf4(A) C
Sa(A U SA(A)). Supposer € S4(A). If x ¢ S4(A U Sp(A)), thenSs(A) and
Sa (A)) are not disjoint, a contradiction. a

Proposition 6 lets us analyze the solidificatiom(f:fL by determining which
cells are added td}. We can extend this analysis to the correspnding final
states by applying a simple continuity result.

Lemmab. If A, —> Ay, thentp(4;) — tA(Axo).

Proof. Fix u € Z? and writedu = u U du. The convergence; — A
implies that

A; Ndu = As Ndu eventually inr. (16)
For¢ such that (16) holds,
(ta(An) () = (tA(Aoo)) ().
Thereforega (A;) — 1A (Axo). O

In our analysis of the Exactly 1 rule we showed that ¢elly) is not a
member ongo if and only if x and y share the same greatest power of 2
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divisor. We also saw that the same condition characterizes membership in

Ay N Dy. Let
o0 ) o0 )
x:ZZ’xi, y:ZZ’yj
i=0 =0

with x;, y; € {0, 1}. Supposdx, y) ¢ Ago. Then there exists > 0 such
thatxy = yx = 1L andx; = y; = 0, fori < k. In particular, the odd-even
parities ofx andy agree. Hence the four neighbors(ef y) have coordinates
with different parity. ThusS4(AL)) = (AL,)¢. Combining Proposition 6 with
Lemma 6,

AR = lim i,(Ag) = lim 71a(r{ (A0) = Taa(AL) =22 (17)

In particular,p14 = 1.
In similar fashion, one can show that

A1 =Dy U{(EWN +1),0), (0, £(N + 1)}

Ancther variant of Exactly 1
Packard and Wolfram [4, Section 2] discussed a CA related to Exactly 1 that
they incorrectly identified as a solidification rule. Namétyle 174 (accord-
ing to their numbering scheme) is the modificationtgfin which a vacant
cell becomes occupied if exactly one of its four neighbors is occupied while
an occupied cell becomes empty if all four neighbors are occupied. Let us
denote this CA map aspy and its final state from a singleton a§OW. In
much the same way as for Packard Snowflakes, one can verify the analog of
Proposition 6,

Tpy = rpwrf_l. (18)
We omit the proof. Proceeding as in (17), we conclude from (18) that
APW — Al \ A9, whereAS, consists of all sites im2, with four neigh-
bors inAL . Recall the decomposition of Corollary 1 and the complementary
binary rule of Corollary 2. Note that, ¢ A2, since two neighbors of any site
in the odd checkerboard have both coordinates odd. Moreover, fdr any,
2kc, e A2, since the coordinates of all four neighbors of any site in the
dilated odd checkerboard have opposite parity. We conclude that Rule 174 has
asymptotic densit\é andC, as its final state. One can also show that

AR = (C, N DN) U {(£(N +1),0), (0, £(N + 1))}

6 THE 713 RULE

Intriguingly, although the patterns generateddpy differ considerably from
those ofry (cf. Fig. 12), the populations at dyadic times, and hence the
asymptotic densities, are identical.
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FIGURE 12
Comparison of1 andry3. Cell counts are both 341 after 15 iterations from a singleton.

Proposition 7. For 713, if Ag = {0} the number of occupied cells at time
N=2"—1lisa, = 4"+31_1, and so p13 = 3.

As we did for Exactly 1, let us begin by deriving the population formula for
the rotated rule;; and then transform back tas. Again leta, = a,; = #A}
be the population of the entire rotated crystal at tifg;,, the population of
the portion of the rotated crystal in the first quadrant. Directly enumerating the
first few cell counts shows that they are the same as;fon; = 5, ap = 21,
a3=85,...;q1=2,6]2:6,Q3=22,....

Once more, our strategy is to analyze the cloning of dyadic blocks. Whereas
71 reproduces square regions simply, the more intricate evolutiegy oépro-
ducestriangular regions. Thus we divid@(By,,,) into six lattice triangles
and one square, as shown in Fig. 13:

Ny>0,x <N,y <ux;
() y<Ny,x>0,y>x;
m y=>=nN,+14,x>0,y < —x+ Nyy1+ 1
(V) y<Npj1+Lx<Ny+1y>—-x+Nyp1+1
Mx>N,+1,y>0,y<—x+Nyy1+1
(VD) x < Npy1+1Ly<Ny+1y>—x+ N1+ 1
(VI) [Ny 4+ 1, Nyg1]l X [Ny + 1, Nyqal

Againwe abbreviat®, = Q(A;“Vn). Whereas fot1 we used the configura-
tion on a square,,, as the fundamental cloning object, fag we instead use
the configuration in triangular region I. We claim th@}1 consists of eight
rigid transformations of the configuration in | and four rigid transformations
of the diagonal = x (0 < x < N,), with some overlap (cf. Fig. 13).

Denote the population in each of the seven regiongas #(A%, N I),
etc., and let/ = N + 1 be the population of the diagonak= x (0 < x < N,,).

By symmetry,p; = pi1, S0g, = 2p; +d.

Due to the embedded Sierpinski Lattice, the lif@sN] x {N} and

{N} x [0, N] consist of alternating occupied and empty cells. Undgr
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FIGURE 13
Seven regions for the analysisafs.

these boundaries bahave equivalently to empty rows. At fime 1 a seed
forms at(N + 1, N + 1), which belongs to region VIl only. By reasoning
similar to that for Lemma 1,0, (i.e., the configuration on the union of
regions I, I, and the diagonal adjoining them) copies exactly into region VII.
Since after timeV + 1 the N x N squares NW and SE of the seed evolve
for time N with boundary conditions equivalent to those at the origin at
time 0, a solid diagonal advances at lightspeed in both directions along the
liney = —x + N,+1 + 1. Since the see@ + 1, N + 1) belongs to VII,
the population of the two diagonals separating Il from IV and V from VI is
2d — 2. Henceg,+1 = 4p; +2d + pi + piv + pv + pvi +2d — 2.

Since the segmen[B, N] x {N}and{N} x [0, N] behave like boundaries
of empty cells under the 1 or 3 rule, the boundary conditions for growth into
regions Il and V starting at the seéd + 1, N + 1) are identical to the
conditions for growth into | and Il starting froifi, 1) at time 1. However, the
boundary conditions for growth into 1V and VI starting frotW + 1, N + 1)
are identical to the conditions starting fro¢@, 0) at time 0 growing into
regions | and Il. Because of this, the configurations on triangles Il and V
are shifted by(+1, —1) and(—1, +1), respectively. In other words, one can
imagine that the growth into region | from the se@d0) is identical to the
growth into Ill from a seed aiV,, + 2, N,,) rather than fron{N,, + 1, N, + 1).
Likewise, the growth into region | fror0, 0) is identical to the growth into
V from (N,, N, + 2). These shifts do not affect the population of the rigid
transformations of the configuration in region I. Henge= piy = piv =

pv = pvi.
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Putting all this together, we obtain

Gni1=8p;+4d —2=4Q2p; +d) -2
=4'Qn_2-

This difference equation and initial data are the same as for Exactly 1, so again
(8) and (9) hold in the new setting and the asymptotic densities of the rotated
rule 7}, and original rulery3 are and3, respectively.

The proof by induction of the recursive evolution gk is analogous to the
proof for 7', so we will skip the details. The boundary conditions described
above determine the growth within triangles Il through VI.

7 THE 7134 RULE

To conclude the paper we turn to the final Packard Snowflake on the von
Neumann neighborhood, generated . We view this case as a perturbation
of 713, just as we considered, a perturbation ot;. By Proposition 6,

' -1
T134 = T134T13 -

Thus we can determina’3* by filling in the holes inA%3. Moreover, the
boundary conditions for evolution afi3 in regions I-VIlI and the cloning
structure within those regions can be verified fgg4 in the same way. How-
ever, the population af; 34 has extra contributions from the 4 condition along
“seams” between regions | and V, between regions Il and Ill, and at four
additional sites (cf. Fig. 14).

Let ¢, be the quadrant population count afs, p; the count in region
I, andd = N + 1 the diagonal population as in the previous section. Now
qn = 2p; +d + 2, since additional cells are added2t0) and(0, 2) by the
4 condition. The modified recursion is

Gn+1=8pr + (4d — 2) + (sp + 4, (19)

wheres,, + 4 represents the contribution from sites along the above-mentioned
seams and four additional sites. Simplifying, we get1 = 4g, + s, — 6.
Afinal lemma now evaluates the seam correction.

Lemma 7. Thereare2" — 1 occupied sitesforming a period 2 sequence along
the boundary of Q,, that are candidatesto fill in by the 4 condition, but 2n — 1
of these are already filled in by t13. Thus s, = 2" — 2n.

Proof. Theseamgy =N, +1,0<x <N,+1l,andx =N, +1,0<y <

N, + 1 have atotal of 2"1 — 1 cells. Due to the shifted recursion fag, there

are cells alternating between occupied and empty on both sides of the seams.
However, the 2 — 1 cells at(N, +2 — 2, N, + 1) and(N,, +1, N,, +2—2),
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FIGURE 14
Cells added by the 4 condition of34 are darker. These boundary cells are added on every dyadic
scale, then reproduced by the cloning process.

where 0< i < n, are already filled in by13, due to the embedding of the
Sierpinski lattice. This leavg®" — 1) — (2rn — 1) previously empty cells with
four occupied neighbors that fill by the 4 condition, as claimed. O

Therefore
Gnt1 =44, +2" — 2n — 6,

which has solution

29 2 20
=42l Th =
" =73 3"
The crystal size ig,, = 4q, — 7 because the 4 added cells on the axes are
double counted and the origin is counted 3 times too many. It follows that

29, 41, 8 17
dn—1—84 -2 +§n+3,
and the asymptotic density of the rotated rufg, and original ruleryz4 are
Piaa= 2 andpizs = 2, respectively.

In closing, we note thapizs = g—g is lower than p14 = 1 even though
cells join the crystal with the former density in an additional case. The lack
of monotonicity in nontrivial Packard Snowflakes that produces their exotic
structure also accounts for surprises such as this.
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