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Abstract

Vote trading is ubiquitous in committees and legislatures, and yet we know very

little about its properties. We explore this subject with a laboratory experiment.

We propose a model of vote trading in which pairs of voters exchange votes whenever

doing so is mutually advantageous. The resulting trading dynamics always converge

to stable vote allocations–allocations where no further improving trades exist. The

data show that stability has predictive power: vote allocations in the lab converge

towards stable allocations, and individual vote holdings at the end of trading are

in line with theoretical predictions. There is less support for the finer details of the

trade-by-trade dynamics.
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1 Introduction

Considering the very rich literature on voting and committee decision-making, the scarcity

of systematic studies on vote trading is remarkable. We use ”vote trading” to indicate the

exchange of votes on some issues for votes on other issues–lending support to somebody

else’s preferred position in exchange for that person’s support of one’s own preferred

position on a different issue. Common sense, personal experience, and anecdotal evidence

from legislative bodies all point to its extent and importance.

Vote trading is linked to fundamental questions in collective choice: Will trades lead

to vote allocations where no further trade is desirable? If so, what efficiency properties

will such allocations possess? In Calculus of Consent (1962), Buchanan and Tullock

advocated vote trading as route to Pareto superior outcomes and conjectured that trading

resolves the indeterminacy of voting outcomes in the absence of a Condorcet winner, i.e.,

an outcome that defeats all other outcomes under majority rule. Is such a conjecture

correct? The 60’s and 70’s saw a flowering of theoretical studies, but the literature was

hampered by the lack of a common framework. In the absence of broadly accepted results,

analyses that modelled vote trading directly fizzled and eventually stopped.1.

Not only is the study of vote trading of interest theoretically, but it has long been

recognized as being especially significant for our understanding of political institutions.

More than a century ago, Arthur F. Bentley argued that logrolling is vital to the practical

business of legislatures, which would essentially cease to function if members of legislatures

were unable or unwilling to trade votes:

”Log-rolling is a term of opprobrium... Log-rolling is, however, in fact, the most

characteristic legislative process... It is compromise, not in the abstract moral form, which

philosophers can sagely discuss, but in the practical form with which every legislator who

gets results through government is acquainted. It is trading. It is the adjustment of

interests. Where interests must seek adjustment without legislative forms, ...they have no

recourse but to take matters in their own hands and proceed to open violence or war. When

they have compromised and ...process can be carried forward in a legislature, they proceed

to war on each other, with the killing and maiming omitted. It is a battle of strength, along

1See, among others, Coleman (1966, 1967), Park (1967), Wilson (1969), Tullock (1970), Haefele (1971),
Kadane (1972), Bernholz (1974), Riker and Brams (1973), Mueller (1967, 1973), Koehler (1975), Miller
(1977), Schwartz (1975, 1977). Systematic empirical evidence is scarce. Focusing on the US Congress,
Mayhew (1966) studies agricultural bills in the House; Stratmann (1992, 1995) identifies roll call votes
where a legislator votes against his constituency’s interest and attribute a substantial fraction of such
votes to vote trading. More recently, Guerrero and Matter (2016) measure the extent of vote trading by
identifying reciprocity networks in roll call voting and bill cosponsorship.
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lines of barter. The process is a similar process, but with changes in the technique. There

never was a time in the history of the American Congress when legislation was conducted

in any other way.”

-from The Process of Government, 1908 (pp.370-371)

One reason for our imperfect understanding of vote trading is that the problem is

difficult. Consider the simplest framework, the natural first step proposed by Riker and

Brams (1973). A committee with an odd number of members considers several binary

proposals, each of which may pass or fail; voters can trade votes with each other without

enforcement or credibility problems; after trades are concluded, voting occurs by majority

rule, proposal by proposal.2 Every voter has separable preferences across proposals, with

different cardinal intensities. Even in this restricted domain, vote trading is a difficult

problem: trades take place without the equilibrating forces of a price mechanism, impose

externalities on non-trading voters, change the overall distribution of votes, and with it

other voters’ incentives and power to affect outcomes and to induce further trades.

Addressing the basic questions raised earlier requires a rigorous definition of stability

and a formal model of dynamic adjustment. In this paper we implement in an economics

laboratory the general theoretical framework developed in Casella and Palfrey (2019).

The theory is based on the concept of a stable vote allocation, with the property that no

coalition of voters can reach a new allocation that all coalition members strictly prefer by

trading votes among themselves. A feasible trade that leads the coalition to a preferred

vote allocation is called a blocking trade. The framework implies a dynamic trading process

with a sequence of blocking trades that continues until a stable (unblocked) allocation is

reached. The key theoretical result is that there always exists a path of trades that leads

to a stable vote allocation. The result holds regardless of whether there is a Condorcet

winner.

The theoretical approach generates sharp predictions about final vote allocations, pro-

posals’ outcomes, and even exact sequences of trades. It is a natural framework for a lab-

oratory experiment, where the environment can be implemented and manipulated with

strict control and the detailed workings of the dynamic mechanism can be observed with-

out confounding factors. In the simplified laboratory environment trade is restricted to

be pairwise: a trade involves the exchange of one vote on one proposal for one vote on

another proposal. We impose such constraint in part because pairwise trading is typically

considered more empirically relevant,3 in part to reduce the complexity of the trading

2In practice, vote trades often take the form of agreements and promises that are enforced by norms
or reputational considerations. Even ignoring such factors, the problem remains complex.

3Riker and Brams (1973) for example, argue that the difficulty of organizing a coalition makes non-
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mechanism used in the laboratory. An important advantage of this simplified setting

is that the theory predicts convergence to a stable vote allocation for any sequence of

blocking trades.

The experimental design employs three treatments, corresponding to three different

preference profiles. All treatments have five member committees, and either two or three

proposals. In each case, the stable outcome reachable through the theoretical trading

dynamics is unique.

We evaluate the experimental results by distinguishing between hypotheses that con-

cern the final state of the system and those concerning more detailed aspects of the

dynamic process of trade. The first set of hypotheses find solid support in the data.

First, the data show that stability is a useful predictive tool. In all treatments, two-thirds

or more of the final vote allocations after trading are stable. Second, individual vote

allocations qualitatively track the theoretical model closely. Across all treatments, across

all voters, across all proposals, in every case in which the stable allocation is predicted

to reflect a net purchase of votes, or a net sale, we observe it in the data. Third, when

looking at the final outcomes reached in the lab, we find that in all treatments the out-

come predicted by the theory is either the most frequently observed or the second most

frequently observed.

The theoretical hypotheses that relate to the finer details of trading dynamics are

less well supported by the data. The main discrepancy, and this is our fourth result, is

that while we observe many payoff-improving trades, as posited by the theory, we also

observe many trades that shift vote allocations without immediately affecting outcomes.

We present the results of a statistical classification model that estimates the relative

frequency of different kinds of trades. In addition to payoff-improving trades, the model

includes trades that increase the number of votes held on high-value issues, as well as

random trades. We find that both of these types of trades are frequent and significant.

Shifting votes towards higher-value proposals suggests some form of prudential behav-

ior. The dynamic process posited by the theory is instead myopic: trades are considered

profitable if the resulting vote allocation strictly improves the payoff of the traders, relative

to the current vote allocation. Borrowing concepts of farsightedness from the theoreti-

cal literature (Chwe, 1994, Dutta and Vohra, 2015, Ray and Vohra, 2017), we extend

the model to farsighted vote trading. The definition of farsightedness leads directly to

some simple predictions, but in our experiment farsighted behavior of this kind is soundly

pairwise trading unlikely. The restriction to pairwise trades is also consistent with Guerrero and Matter’s
(2016) empirical strategy.
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rejected.

The use of laboratory methods is particularly appropriate for the study of vote trading,

given both the difficulty of collecting historical data and the ability of experiments to

control the basic features of the environment, such as preferences and the set of issues

being voted on, which allows a direct analysis of the theoretical hypotheses. And yet, if

empirical and theoretical studies of vote trading are not numerous, experimental studies

are even fewer. The study closest to ours is McKelvey and Ordeshook (1980), but the

stark differences in procedures and objectives (a comparison of alternative cooperative

solution concepts in McKelvey and Ordeshook in contrast to this paper’s study of vote

trading dynamics) make a direct comparison impossible.4

Methodologically related to our trading protocols are some recent experiments on

decentralized matching, in particular Echenique and Yariv (2012).5 In those experiments,

as in ours, a central question is the extent to which the experimental subjects succeed in

reaching stable outcomes. The details of those environments, however, differ substantially

from ours, and the substantive questions we ask are specific to vote trading. There is a

more distant relationship between the present paper and experimental studies of network

formation. In network models, an outcome is a collection of bilateral links between agents,

represented by either a directed or undirected graph, and the structure of payoffs is very

different from vote trading games. Some classic theoretical analyses of network formation,

however, exploit a pairwise stability concept, as we do (Jackson and Wolinsky 1996). Most

experimental papers rely on a different protocol–a simultaneous move game where agents

form links unilaterally–but some recent papers are closer to our approach: Carrillo and

Gaduh (2016) and Kirchsteiger et al. (2016) examine dynamic sequential link formation

with mutual consent6; Berninghaus et al. (2006) and Choi et al. (2019, 2020) examine

asynchronous unilateral link formation in continuous time.

Finally, as relates to more standard market experiments, a novel feature of our trading

environment is the absence of divisible side payments (prices) denominated in a commonly-

4Fischbacher and Schudy (2014) conduct a voting experiment to examine the possible behavioral role
of reciprocity when a sequence of proposals come up for vote. There is no explicit vote trading, but voters
can voluntarily vote against their short term interest on an early proposal in hopes that such favors will
be reciprocated by other voters in later votes.

5Other related works on matching are Nalbantian and Schotter (1995), Niederle and Roth (2009)
and Pais et al. (2011). These papers have incomplete information and study the effects of different
offer protocols and other frictions. Kagel and Roth (2000) study forces leading to the unraveling of
decentralized matching.

6Both papers use the random link arrival protocol of Jackson and Watts (2002): in each period one
link is randomly added to the network, and the two newly connected players simultaneously decide to
accept or reject the link.
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valued currency. That is, these are barter markets. To our knowledge, experimental

studies of barter markets are rare. Ledyard, Porter and Rangel (1994) is an example that

demonstrates the challenges to both design and data analysis.

The paper proceeds as follows. The next section briefly summarizes the theoretical

model and results on which our experiment is based; section 3 describes the experimental

design; section 4 reports the experimental results, and section 5 concludes.

2 The Model

2.1 The Voting Environment

The environments studied in the laboratory are simplified versions of the trading environ-

ments analyzed theoretically in Casella and Palfrey (2019) (CP). A committee of N (odd)

voters must approve or reject each of K independent binary proposals, a set denoted by

P. Committee members have additively separable preferences represented by a profile of

values, Z, where zki is the value attached by member i to the approval of proposal k, or

the utility i experiences if k passes. The utility from a proposal failing is normalized to

0, and value zki is positive if i is in favor of k and negative if i is opposed. Proposals are

voted upon one-by-one, and each proposal k is decided through simple majority voting.

Before voting takes place, committee members can trade votes. Vote trades can be

reversed if the parties to the trade decide to do so, but the agreements suffer no credibility

or enforcement problems: one may think of votes as physical ballots, each one tagged by

proposal, and of a trade as an exchange of ballots.

After trading, a voter may own zero votes on some proposals and several votes on

others, but cannot hold negative votes on any proposal. We denote by vki the votes

held by voter i over proposal k, and by vi = (v1i , ..., v
K
i ) the set of votes held by i over all

proposals. We call v = (v1, ..., vN ) a vote allocation, i.e. the profile of vote holdings over all

voters and proposals. The initial vote allocation v0 equals (1, 1, , , 1), where each 1 denotes

a 1×K unit vector. The set V contains all feasible vote allocations: v ∈ V ⇐⇒
∑

i v
k
i = N

for all k and vki ≥ 0 for all i, k.

CP allows for general trades–trades among coalitions of voters of arbitrary size, where

each voter may exchange as many votes as desired over one or more proposals for a

possibly different number of votes on other proposals. Here we specialize the model to

the design of the laboratory experiment. We restrict all trades to be elementary trades.

i.e. trades that concern two voters only, with one vote on one proposal exchanged for one
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vote on another proposal. More precisely:

Definition 1. An elementary trade between voters i and i′ is an ordered pair of vote

allocations (v, v′) such that v, v′ ∈ V and there exists a pair of proposals k, l such that:

(i) (vki − v′ki ) = 1, (vki′ − v′ki′ ) = −1, (vli − v′li ) = −1, (vli′ − v′li′) = 1; (ii) vmj = v′mj for all

m 6= k, l and for all j; and (iii) v′j = vj for all j 6= i, i′.

Given a vote allocation v, when voting occurs, each voter’s dominant strategy is to

cast all votes in his possession over each proposal in the direction the voter sincerely

prefers–in favor of proposal k if zki > 0, and against k if zki < 0. We call P (v) ∈ P the

outcome of the vote if voting occurs at allocation v: the set of proposals that receive at

least (N + 1)/2 favorable votes, and therefore pass. The utility of voter i if voting occurs

at v is denoted by ui(v): ui(v) =
∑

k∈P (v) z
k
i . Preferences over outcomes are assumed to

be strict, that is, ui(v) = ui(v
′) if and only if P (v) = P (v′).

Note that with K independent binary proposals, there are 2K possible outcomes (all

possible combinations of passing and failing for each proposal). Although it is convenient

to represent preferences in terms of cardinals values Z, our model relies exclusively on

the voters’ ordinal rankings over the 2K possible outcomes. All results are unaffected by

changes in Z that do not affect individual ordinal rankings.

The focus is on stable vote allocations that hold no incentives for further trading.

Define:

Definition 2. An elementary trade, (v, v′), between voters i and i′ is payoff improving

if ui(v
′) > ui(v) and ui′(v

′) > ui′(v).

Definition 3. An allocation v ∈ V is stable if, for every pair of voters i and i′, there

exists no payoff improving elementary trade.

Note that a stable vote allocation always exists: any feasible allocation of votes where

a single voter i holds more than half the votes on every proposal is trivially stable: no

exchange of votes involving i can make i strictly better-off; and no exchange of votes that

does not involve i can change the outcome. Hence, the interesting question is not whether

a stable allocation exists, but whether and under what conditions sequential decentralized

trading from the initial vote allocation leads to stable vote allocations.

2.2 Trading Dynamics

To answer the question, the theory needs to specify a dynamic process through which

trades take place. Although the literature does not make explicit reference to an algo-

rithm, the sequential myopic trades envisioned by Riker and Brams (1973) and Ferejohn
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(1974) lend themselves naturally to such a formalization. Pivot Algorithms are defined

as sequences of trades yielding myopic strict gains to both traders. When we specialize

trades to elementary trades, we can define:

Definition 4. An Elementary Pivot Algorithm is any mechanism generating a se-

quence of trades as follows: Start from the initial vote allocation v0. If there is no payoff

improving elementary trade, stop. If there is one such trade, execute it. If there are

multiple such trades, choose one according to some tie-breaking rule R. Continue in this

fashion until no payoff improving elementary trades exist.

Rule R specifies how the algorithm selects among multiple possible trades; for example,

R may select each potential trade with equal probability; or give priority to trades with

higher total gains; or to trades involving specific voters. The definition describes a family

of Pivot algorithms, spanning all possible R rules.

Trades are required to be strictly payoff improving for both traders. That means

that trades concern pivotal votes: trades of non-pivotal votes cannot affect outcomes and

thus cannot induce changes in utility.7 More than that: since trades are restricted to be

elementary, only pivotal votes can be traded. It is this property, anticipated by Riker and

Brams, that gives the name to the algorithms.

2.3 Pivot-Stable Allocations

An obvious question is whether trading under Pivot algorithms ever stops; in principle

there is nothing to rule out trading cycles. If trading does stop, we call the resulting vote

allocation a Pivot-stable vote allocation.

Definition 5. An allocation of votes v is Pivot-stable if it is stable and reachable from

v0 through an elementary Pivot algorithm in a finite number of steps.

CP’s main result in a more general setting is an existence theorem, proving that

a finite path of vote trades ending at a stable vote allocation always exists, without

requiring restrictions on trades. When trading is limited to elementary trades, the result

is stronger:

Theorem. For any K, N , and z, all elementary Pivot algorithms converge to a stable

vote allocation in a finite number of trades.

7Note that strict preferences imply that it is impossible for a trade to cause a strict payoff gain for one
side and not change payoffs for the other. Changing payoffs means that pivotal votes have been traded,
and thus both sides of the trade must be affected.
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The modifier ”all” refers to the generality of the result in terms of the choice rule R :

convergence is guaranteed for any R. Thus elementary Pivot algorithms always reach a

stable vote allocation, regardless of the order in which different possible trades are chosen,

for any number of voters and proposals, and for all (separable) preferences.

Proof. Consider voter i and a vote allocation v. Let xki = |zki | be voter i’s intensity for

proposal k, and define as voter i’s score at v the function:8

σi(v) =
K∑
k=1

xki v
k
i .

Suppose a payoff improving elementary trade occurs, resulting in a new vote allocation,

v′. If i was not a party to the trade, then σi(v
′) = σi(v), by construction. If i was a party

to the trade trade, by definition of elementary Pivot algorithm, i must trade away one

vote on a proposal k− that i wins pre-trade and loses post-trade, and aquire one vote on a

proposal k+ that i loses pre-trade and wins post-trade, or (v′k
+

i −v
k+

i ) = 1 = −(v′k
−

i −v
k−
i ).

For the trade to be payoff improving, it must be that i values winning k+ more than

winning k−, or xk
+

i > xk
−

i . Thus:

σi(v
′)− σi(v) = xk

+

i − xk
−

i > 0

The score of voter i has increased. Hence if i trades, σi(v
′) > σi(v). At any future

step, either there is no trade and a stable allocation has been reached, or there is trade,

and thus there are two voters i and i′ whose score increases. But score functions are

bounded and the number of voters is finite. Hence trading must end after a finite number

of steps. Note that the argument makes no restriction on R, and thus the result holds for

all R.

Vote trading environments are unusually complex: the implicit value of a vote depends

on its pivotality, and thus changes with other voters’ allocations; any trade affects the

possibility of further Pivot trades and can generate a whole chain of new exchanges;

others’ trades change outcomes, and generate externalities on all voters. Elementary Pivot

algorithms are simple, intuitive rules, describing plausible trades in such a complicated

8A voter’s score is the intensity-weighted sum of his votes, and can be loosely interpreted as a measure
of the potential worth of all the votes currently in the possession of that voter. The score changes as a
voter’s vote holdings change during trade; for example, it goes up if the voter holds one additional vote
on a proposal with a higher value and one less vote on a proposal with a lower value. It will play a role
later in our analysis of vote trading in the experiment.
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environment. Their simplicity allows some conceptual progress, as in the stability result

we just described. But we focus on them for a second reason too: we conjecture that they

may have predictive power.

We next turn to a description of the experiment. In what follows, it should be under-

stood that the term ”elementary” always applies to trades and to Pivot algorithms, even

if not stated explicitly.

3 The Experiment

The experiment was conducted at the Columbia Experimental Laboratory for the Social

Sciences (CELSS), with registered Columbia students recruited from the whole campus

through the laboratory’s ORSEE9 site. No subject participated in more than one session.

After entering the computer laboratory, the students were seated randomly in booths

separated by partitions; the experimenter then read aloud the instructions, projected

views of the computer screens to be seen during the experiment, and answered all questions

publicly. Because the design of the trading platform presents some challenges, we describe

it here in some detail. Sample instructions and screenshots are reproduced in the online

appendix.10

Each subject’s computer screen displayed a table with all subjects’ values per proposal

(in experimental points), and vote holdings. We refer to this matrix as the vote table. The

vote table conveys to all voters complete information about voters’ preferences and the

current vote allocation. The interface and the instructions associated the two alternatives

for each proposal, Pass or Fail, with two colors, Orange (Pass) and Blue (Fail). Thus a

subject’s value for a proposal indicated earnings from the subject’s preferred alternative

winning, relative to zero earnings if it lost. All individual’s values were positive and

displayed in the color of the individual’s preferred alternative.11 The vote table also

showed the vote totals on each issue and the points the subject would win if voting were

held immediately. Each subject started with one vote on each proposal.

After observing the vote table, any subject could post a bid: a request for a vote

on one of the issues, in exchange for the offer of his vote on a different issue. The bid

9Greiner (2015).
10The computerized trading platform was implemented using the Multistage software program, an open

source software developed at Caltech’s Social Science Experimental Laboratory (SSEL) by Chris Crabbe.
The software is available for public download at http://multistage.ssel.caltech.edu:8000/multistage/.

11Thus, for example, z1i = −300 in the notation of the model would appear on the screen as voter i
having a value of 300 for proposal 1 highlighted in Blue. A sample subject computer screen shows this
in the online appendix.
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appeared on all committee members’ monitors, together with the ID of the subject who

had posted it. A different subject could then accept the bid by clicking on it, or post

another bid.

A central feature of vote trading is that the preferences and vote holdings of the

specific individuals making a trade determine the effect of the trade. Contrary to standard

market experiments, then, subjects must not only post potentially profitable bids, but

also consider the identity of their trading partner. In adapting the bidding platform

used in market experiments, we added a confirmation step. After a bid was accepted, a

window appeared on the bidder’s screen detailing the effects of that specific trade–what

the outcome would be upon immediate voting–and asking the bidder to confirm or reject

the trade. If the trade was rejected, a message appeared on the screen of the rejected

trade partner, informing him of the rejection; trading then continued as if the bid had

never been accepted (thus the bid remained posted and available for others to accept). If

the bidder confirmed the trade, a popup window with the updated vote table appeared on

all screens for 10 seconds and trading activity was paused during that 10 second interval,

to give traders time to study the new vote allocation that resulted from the trade. The

window also reported the post-trade voting outcome that would result if voting were to

occur immediately. The vote table that was always visible on the main screen was also

updated immediately.

The vote-trading market was open for three minutes.12 However, in a market where

each concluded trade can trigger a new chain of desired trades, it is important to allow

adequate time for any subsequent desired trades to be executed. For this reason the time

limit was automatically extended by 10 seconds whenever a new trade was concluded.

No bid could be posted if a subject did not have the vote to execute it if accepted;

thus a voter could post multiple bids only as long as he possessed the votes to execute

them all, had all been accepted. Posted bids could be canceled at any time, an important

feature in a market where somebody else’s executed trade can make an existing posted

bid suddenly unprofitable.

Once the market closed, voting took place automatically, with all votes on each issue

cast by the computer in the direction preferred by each subject.13 Then a new round

started, with the initial vote allocation of one vote per voter per proposal.

12The market was open for only two minutes in the two-proposal treatment, AB, because the extent
of possible trading was more limited.

13With binary alternatives for each proposal, voting in the preferred direction is a dominant strategy.
We chose to implement the casting of votes automatically to simplify an already complex experiment,
save time, and focus all attention on the trades.
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The experiment consisted of three treatments, AB, ABC1, and ABC2. In all three

treatments, the size of the voting committee was five (N = 5), while the number of

proposals depended on the treatment: K = 2 in treatment AB, and K = 3 in treatments

ABC1, and ABC2. Treatments ABC1 and ABC2 had different preference profiles. In

each committee, subjects were identified by ID’s randomly assigned by the computer, and

proposals were denoted by A and B (in treatment AB), and A, B, and C (in treatments

ABC1 and ABC2). Each session started with two practice AB rounds; then three rounds

of treatment AB, and then five rounds each of ABC1 and ABC2, alternating the order.14

We did not alternate the order of treatment AB because its smaller size (K = 2) made

trading substantially less complicated for the subjects, and thus we implemented it before

the more complex treatments. This is also the reason for the fewer number of rounds

(three for AB, versus five for ABC1 and ABC2).

Committees were randomly formed, and ID’s randomly assigned at the start of each

new treatment, but the composition of each committee and subject ID’s were fixed for all

rounds of the same treatment. All sessions except for one consisted of 15 subjects, divided

into three committees of five subjects each.15 At the end of each session, subjects were

paid their cumulative earnings from all rounds of all treatments, converting experimental

points into dollars via a pre-announced exchange rate, plus a fixed show-up fee. Each

session lasted about 90 minutes, and average earnings were approximately $36, including

the $10 show-up fee.

We designed the three treatments according to the following criteria. First, we wanted

a K = 2 treatment, as a simpler initial task for the subjects as they gained experience

with the trading protocol. Second, we chose profiles of values for which the stable vote

allocation reachable via Pivot trades is unique but requires multiple trades. In AB, the

path to stability is itself unique, while in both ABC1 and ABC2 the unique stable vote

allocation can be reached via multiple trading paths.

Third, we designed preference profiles for which the Condorcet winner exists but need

not be the Pivot stable outcome: it is Pivot stable in AB and in ABC2, but not in

ABC1. The two matrices ABC1 and ABC2 are otherwise similar and in particular have

Pivot trading paths of equal multiplicity and length. Note that we do not specify R,

the selection rule when multiple trades are possible, but let the experimental subjects

select which trades to conclude. For each of the experimental matrices, the Pivot-stable

allocation is unique and invariant to R.

14Two of the sessions had only two treatments because a programming error made the last five rounds
of data unusable: AB and ABC1 in one case,and AB and ABC2 in the other.

15One session had only ten subjects, divided into two committees.
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The three preference profiles used in the experiment are given in Table 1 (with the

Pass/Fail notation of the theoretical model). In each matrix, rows correspond to proposals,

and columns to voters.

AB
1 2 3 4 5

A 49 −29 −29 12 −12
B 12 −12 −49 29 49

ABC1
1 2 3 4 5

A 23 −23 10 −10 23
B −10 −10 23 −23 10
C 18 −18 −18 18 −18

ABC2
1 2 3 4 5

A −21 15 −9 21 9
B 15 9 15 −15 −15
C −9 −21 21 9 21

Table 1: Preference profiles used in the experiment.

To illustrate the dynamics of the Pivot algorithm, consider the sequence of Pivot trades

with value matrix AB. At v0, A fails and B passes, or P (v0) = B. The outcome is the

Condorcet winner. Voters 2, 4 and 5 are all on the winning side of the proposal each of

them values most, and have no payoff improving trade. But voters 1 and 3 can gain from

a trade reversing the decision on both A and B: voter 1 gives a B vote to voter 3, in

exchange for 3’s A vote. With no further trade, the outcome would be P (v1) = A, which

both 1 and 3 prefer to P (v0) = B. At v1, however, 2 and 4 have a payoff improving trade:

2 gives a B vote to 4, in exchange for an A vote. At v2, P (v2) = B. Vote allocation

v2 is stable: all pivotal votes are held by voters 2, 4 and 5, none of whom can gain from

trading. No other trading sequence is consistent with a Pivot algorithm; thus trading

follows a unique path, of length two (i.e. consists of a sequence of two trades). Indicating

first the ID’s of the trading partners, and then, in lower-case letters, the proposal on

which an extra vote is acquired by the voter listed first, the path is {13ab, 42ba}. The

unique Pivot-stable outcome is P (v2) = B, which is also the Condorcet winner, and thus

the two coincide in the case of matrix AB.

With matrix ABC1, the Condorcet winner exists and corresponds to P (v0) = A,

but the unique Pivot-stable outcome is ABC–all proposals passing. The Pivot algo-

rithm can follow three alternative paths, two of them of length four, and one of length

three: {13cb, 45bc, 23ab, 45ca}, {23ab, 45ca, 45bc, 13cb}, and {23ab, 45ba, 13cb}. In ma-

trix ABC2, the Condorcet winner again exists. It is ABC, which is also the unique

Pivot stable outcome. Again, the Pivot algorithm can follow three alternative paths,
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two of them of length four, and one of length three. They are: {15ab, 34ba, 24cb, 15bc},
{24cb, 15bc, 15ab, 34ba}, and {24cb, 15ac, 34ba}. Although ABC1 and ABC2 admit multi-

ple possible trading paths, for all three matrices the Pivot stable vote allocation is unique.

Table 2 reports the experimental design.

Session Treatments # Subjects # Groups # Rounds

s1 AB,ABC1, ABC2 10 2 3,5,5

s2 AB,ABC2, ABC1 15 3 3,5,5

s3 AB,ABC1, ABC2 15 3 3,5,5

s4 AB,ABC2, ABC1 15 3 3,5,5

s5 AB,ABC2 15 3 3,5

s6 AB,ABC1 15 3 3,5

Table 2: Experimental Design

3.1 Hypotheses

The theoretical model yields two distinct sets of predictions: predictions on the final

state of the system once all trading is concluded, and predictions on the trade-by-trade

dynamics. We analyze the experimental data by confronting them to the two sets in turn.

Three theoretical hypotheses concern the state of the system when trade has ended:

the stability of the final vote allocation; the precise final vote allocations across the five

voters on all the proposals; and the final outcome in terms of which proposals pass and

which proposals fail. The first two of these hypotheses specifically address vote allocations,

while the last one addresses outcomes. The first hypothesis about vote allocations is that

final vote allocations will be stable, i.e., at the final vote allocation there exists no mutually

payoff improving elementary trade (H1). The second hypothesis about vote allocations,

i.e., the precise predictions of the Pivot stable model about final vote holdings for each

voter in each treatment (H2), is presented in Table 3. The hypothesis about which

proposals pass or fail, i.e., the Pivot stable outcome in each treatment (H3), is presented

in Table 4. That table also shows the Condorcet winning outcome in each treatment for

contrast.

Clearly the three hypotheses are linked, and vary in how strongly they restrict the

data. H2 places the strongest restrictions, and directly implies H1 and H3: if trading

leads to the vote allocations predicted by the model (Table 3), then (a) the outcomes

must correspond to the Pivot stable outcomes, and (b) there can be no payoff improving
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Voter ID AB ABC1 ABC2

A B A B C A B C

1 2 0 1 0 2 2 1 0

2 2 0 2 0 1 1 0 2

3 0 2 0 3 0 0 2 1

4 0 2 0 2 1 2 1 0

5 1 1 2 0 1 0 1 2

Table 3: Theoretical Final Allocations

Theory AB ABC1 ABC1

A B A B C A B C

Pivot Stable Fail Pass Pass Pass Pass Pass Pass Pass

Condorcet Winner Fail Pass Pass Fail Fail Pass Pass Pass

Table 4: Theoretical Final Outcomes

elementary trades. On the other hand, H1 is neither strictly stronger nor strictly weaker

than H3. That is, trading may end at the Pivot stable outcome while the final vote

allocation is not stable; and, on the flip side, the final vote allocation may be stable while

the outcome differs from the Pivot stable outcome.

A distinct hypothesis concerns the exact details of trade-by-trade dynamics. The

model predicts Pivot trades (H4), i.e., trades that lead to myopic payoff gains for both

voters involved in the trade.

3.1.1 Random trading benchmark

Experimental data are inherently noisy, so a strict test of the model - which is deterministic

- will always fail because a single violation is sufficient to falsify the model. In order to

obtain a more informative measure of the extent to which the data in the experiment

support or contradict the theoretical hypotheses we need as a benchmark comparison an

alternative null model of the trading process. Ideally, the alternative should be well defined

and self-consistent theoretically, as well as being formulated ex ante, before taking cues

from the data itself. A natural null alternative and one that we use because it admits

the greatest possible range of different types of trades is that sequences of trades are

randomly generated, with all feasible trades at a point in time being equally likely to be

executed. In what follows, we begin by comparing the theoretical model to the alternative

of random trading to measure the extent to which the Pivot model provides a useful way
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of organizing the data. In the next section, when studying the detailed trades observed

in the lab, we discuss and evaluate plausible ex-post rationalizations of the data.

If the simulation of random trades is the initial yardstick of comparison for our data, it

is worth describing the simulation methodology in some detail. We began by calculating,

for each treatment, the average length of a round in the experimental data. We then

divided that time interval into a grid of 100 time-cells; the program enacts a random

trade in each time-cell with probability p, such that 100p equals the mean number of

trades per round per group in the treatment. Thus the trades arrive according to a

Poisson process.

At any point in time during the randomly simulated trading round when the program

is called to enact a trade, one random elementary bilateral trade is constructed as follows.

First, the program selects randomly a pair of traders, a pair of proposals, and a direction

of trade, all with equal probability. If both traders possess the required votes for the trade

to be feasible, the trade is implemented. If the trade is infeasible, it is not implemented

and the program draws a new possible random trade. The feasibility of that new randomly

selected trade is checked, and so forth. Once a feasible random trade has been found and

implemented, the clock continues, with further trades being enacted with probability p in

each subsequent time-cell until the 100th time cell has been reached, at which point one

simulated trading round has been generated. We simulated 5,000 random trading rounds

for each treatment.

4 Experimental Results.

The experimental results are presented in two parts. The first part analyzes the properties

of the final state of the system after all trading has concluded - final allocations and final

outcomes - and addresses hypotheses H1, H2, and H3. The second part of the results

section analyzes the trading dynamics and addresses hypothesis H4.

4.1 Part 1: Final Vote Allocations and Final Outcomes

4.1.1 Vote Allocations

Stability of final vote allocations Hypothesis H1 is that final vote allocations will

be stable. Are the vote allocations at which the trading process ends such that no further

payoff-improving trades are possible?

Table 5 reports, for each treatment and for the full data set, the fraction of final
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Data Random Trading
% %

AB 76.5 68.0
ABC1 64.3 61.6
ABC2 64.3 56.8

All 67.5 62.1

Table 5: Percentage of final vote allocations that are stable.

vote allocations that are stable, and the corresponding fraction under the random simu-

lations.16 More than three quarters of all final allocations are stable in AB, just short of

two thirds in ABC1 and ABC2, and just above two thirds over the full data set. The

proportions of stable final allocations are high, providing solid support for H1. Stability

is indeed a useful criterion for thinking about the end points of trading.

Separating the notion of stability as resting point of the system from the dynamic

model of Pivot trading, the evidence in favor of the latter is not as strong. The fraction of

stable allocations is higher than under simulated random trading in every single case, but

the difference is only marginally significant for AB (p = 0.10) and for the whole data set

(p = 0.06).17 When applied to the stability of final vote allocations, random trading is a

demanding comparison because a large fraction of feasible trades take the vote allocation

on at least one proposal away from minimal majority–i.e. away from an allocation where

the two opposite sides differ by exactly one vote. Once away from minimal majority,

elementary payoff-improving trades are impossible, and the vote allocation over the non-

minimal majority proposals is necessarily stable.18

While Table 5 shows that when trading stops, the final vote allocation is usually

stable (H1), it is also informative to ask the converse question: If a stable allocation is

reached during the trading process, does trading stop? Table 6 reports the frequency of

stable allocations that are not followed by further trade in the experimental data and in

simulated random trading. In each of the treatments, the frequency in the experimental

data is between 40 and 50%. It is always higher than under random trading, and the

difference is significant under a one-sided test for ABC1 and pooling across treatments

16Note that H1 should hold for all treatments, and there is no strong reason to test it separately on
each.

17The p-value is calculated from a simple z-test of proportions.
18For example, in treatment AB, where breaking minimal majority on a single issue is sufficient to

induce stability, a single random vote trade from any unstable allocation has never less than a 30 percent
chance of inducing stability.
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Data Random Trading
No further trade (%) No further trade (%)

AB 46.5 40.5
ABC1 43.3 33.7
ABC2 42.1 39.2

All 43.7 37.6

Table 6: Percentage of stable vote allocations followed by no further trade.

(p = 0.02 in both cases).

Final Vote Holdings For each of the three preference profiles used in our experiment,

Pivot algorithms lead to a unique stable vote allocation, summarized in Table 3. Are

Pivot-stable vote allocations predictive of the final vote allocations observed in the exper-

imental data?

Figure 1 reports, for each treatment, the number of votes held on each proposal by

each voter type in the Pivot-stable vote allocation (dashed black), in the data (blue),

and at the end of the random simulations (grey), averaging over all rounds and groups.19

For clarity, proposal and voter IDs on the horizontal axis are ordered so that theoretical

Pivot-stable vote holdings are everywhere weakly decreasing.20

Even if vote allocations within a group were generated randomly, they could not be

independent, both because of the reciprocal nature of trades and because of the adding-up

constraints, forcing total vote holdings across all voters to sum to 5 for each proposal,

and total vote holdings across proposals to sum for to 2 in AB or 3, in ABC1 and ABC2,

for each voter. Because of the lack of independence, the confidence intervals reported in

the figure (the light blue bands) were obtained by bootstrapping. In the bootstrapping

procedure, we populated each sample by drawing with replacement from the data the full

vector of vote holdings for a group over all proposals, where a group is identified by its

ID, session, and treatment. The confidence intervals correspond to 95% of realizations

over 5,000 samples, centered on the experimental data.

The vote distribution in the data is less sharply variable than theory predicts, as ex-

pected in the presence of noise, but the qualitative predictions are strongly supported.

There are five voters in each treatment, holding votes over two (in AB) or three issues

19Thus, for example, the number of votes at A1 corresponds to the number of votes on proposal A held
by the subject in role 1 at the end of the round, averaging over all groups, rounds, and sessions of the
relevant treatment.

20At equal Pivot-stable vote holdings, voters are ordered according to their ID, from 1 to 5.
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Figure 1: Final vote allocations.

(in ABC1 and ABC2)–a total of forty points. Of these forty, the theory predicts that 14

should be above 1–the voter should be a net buyer over that issue– and 15 below 1–the

voter should be a net seller. The prediction is satisfied in every single case, across all treat-

ments. Note that the pattern cannot have been generated by random trading, the almost

fully horizontal line that corresponds to the 5,000 random simulations. As expected, ran-

dom trading generates individual vote allocations that on average are indistinguishable

from the initial vote allocations, or 1 vote to each voter over each proposal.

Returning to the fit between the experimental data and the theoretical model, more

informative than the individual points is the pattern across vote allocations. We can

capture such a pattern through simple correlation coefficients between the data and the

Pivot predictions, as reported, together with bootstrapped confidence intervals, in Table

7.21

21Note that the correlation coefficients are invariant to the adding-up constraints that tie down each
subject’s vote holdings across proposals, as well as each group’s aggregate vote holdings on each of the
proposals–they are unchanged if we drop one proposal and one voter.
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Averaging over all groups, per voter ID

AB ABC1 ABC2
0.90 [0.77, 1.0] 0.96 [0.92, 0.99] 0.87 [0.73, 0.96]

Without averaging over all groups per voter ID

AB ABC1 ABC2
0.64 [0.42, 0.77] 0.76 [0.50, 0.84] 0.59 [0.45, 0.69]

Table 7: Correlation coefficients between data and Pivot predictions with 95% confidence
intervals.

The upper panel in the table corresponds to the figure, and the correlation coefficients,

if squared, would correspond to the R2 of a linear regression of final vote allocations in

the experiment on the Pivot predictions. Averaging over all groups and rounds for given

treatment, as done in this case, reduces noise, but a more disaggregated analysis delivers

a similar message. The lower panel in Table 7 again reports the correlation coefficients

between the data and the Pivot predictions, but now without averaging across groups.

The presence of inter-group variation reduces the correlation, but the coefficients remain

large.

Final Outcomes Figure 2 compares the frequency distribution of different outcomes

observed in the experimental data (left bars, in blue) with the simulations with random

trading (right bars, in grey). Outcomes are ordered according to the frequency with which

they are observed in the data. A star indicates the Condorcet winner, and the Pivot stable

outcome is circled.

The figure reveals two regularities. First, in all three treatments, the Condorcet winner

is the most frequently observed outcome. Second, the Pivot stable outcome is either the

most frequently observed outcome (when it coincides with the Condorcet winner) or the

second-most frequently observed outcome (when it differs from the Condorcet winner, in

ABC1). Random trading shares the first feature with the experimental data, but the

frequency of Condorcet outcomes is much higher and the Pivot stable outcome is not

the second (or even the third) most frequent outcome in ABC1. For each of the three

treatments, chi-square tests reject the hypothesis that the frequencies of outcomes are

equal in the data and under random trading (p = 0.010 for AB, p = 0.031 for ABC1, and

p = 0.046 for ABC2).

We conjecture that the reason why the Condorcet winner is so often observed in the
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Figure 2: Frequency of outcomes. Data (left) and simulated random trading (right).

data is related to the reason Condorcet outcomes have such high frequency under random

trading. It is well-known (Park, 1967; Kadane, 1972) that when the Condorcet winner

exists, as in our three treatments, it must coincide with the no-trade outcome. Thus

the frequency with which the Condorcet winner is reached goes hand in hand with the

persistence of pre-trade outcomes. Both reflect the inertia resulting from noisy trades,

and more precisely by trades that do not change outcomes but result in non-minimal

majority vote allocations. Such allocations are stable, and moves away from the status

quo are in general more difficult.22

22We can compute the frequency of the different outcomes focusing only on those rounds in which
the voting outcome, if voting were held, changes during trade. The relative frequency of the Condorcet
winner falls in all three treatments, supporting the conjecture.
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4.2 Part 2: Trading behavior and dynamics

4.2.1 The Dynamics of the Trading Process

If the final state of the system–vote allocations and outcomes–is well captured by a snap-

shot at the system’s resting point, the sequence of trades is a dynamic process tracing

the system’s evolution. Before analyzing the trade data in detail, we display the trade-

by-trade dynamic process in Figure 3.

Figure 3: Dynamic convergence to Pivot stable outcomes.

The figure shows, for each round of each treatment, the dynamic path of the vote

allocations, as it is modified by the succession of trades. The horizontal axis measures

time, in seconds. For each round and treatment, a new marker represents a single trade
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in one of the sessions at that point in time in that round/treatment. The vertical height

of each marker in the graph measures the distance from stability of the vote allocations

after the new trade, averaged across all groups for that round and treatment. In line with

our notion of stability, the distance measure is the minimum number of payoff-improving

trades leading to a stable vote allocation.23 Thus, a new marker lower than the previous

marker indicates a trade that moves the vote allocation closer to stability, and a new

marker higher than the previous marker indicates a trade that moved the vote allocation

further from stability. Because the vertical axis measures distance from stability, the AB

curves begin at 2, since two payoff-improving trades are required from the initial vote

allocation in order to reach a stable vote allocation. For the same reason, the ABC1 and

ABC2 curves begin at 3.

The curves representing the trading sequences decline in all rounds of all treatments,

almost perfectly monotonically, clearly showing the steady dynamic convergence towards

stability: almost every trade moves the system closer (at least weakly) to stability. To

evaluate such convergence against a benchmark, the black curve in each panel reports

the distance from stability over time with random trading, averaged over 5000 simulated

trading periods. With the exception of two trades in round 5 in ABC2, after the first

40 seconds of the trading period, the random trading curve is always higher than the

curve corresponding to the experimental data, in all rounds and in all three treatments,

indicating that the actual trading in the experimental vote markets consistently converged

to stability faster than random trading. In the AB treatment, actual trading converges to

an averaged distance from stability that is virtually 0 in all rounds, while random trading

only reduces the distance to stability by half, from 2 to 1.24

Figure 3 is consistent with subjects’ intentional search for gains from trade. Is this

hypothesis robust to more detailed analysis of the specific trades we see in the lab? In

the remainder of the paper, we address hypothesis H4: are experimental trades well-

described by the Pivot algorithms? We begin with a broad summary of the properties

of the experimental bids and trades. We then test whether the observed trades are

compatible with Pivot trading, explore possible rationales for the deviations we observe,

and construct a statistical model estimating the relative frequency of different types of

23Since the measure of distance is averaged over all groups in all sessions for that round/treatment, the
vertical shift resulting from a single trade in a single group is small and always less than one, reflecting
the unchanged allocations of the other groups.

24It is noteworthy that, except for first 40 seconds of the trading period, convergence to stability is
faster than random trading even in the very first round, before subjects have experience with the market.
Notice the lack of learning in the data–the figure shows little if any systematic difference between earlier
and later rounds.
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Treatment Tot trades groups × rounds Mean trades Median s.d Max Model

AB 115 51 2.25 2 1.92 13 2

ABC1 211 70 3.0 3 1.67 9 3,3,4

ABC2 175 70 2.5 2 1.36 7 3,3,4

Table 8: Number of trades.

trades. Finally, we investigate the possibility of farsighted trading behavior.

4.2.2 Summary of bids and trades

Table 8 reports basic summary statistics on the number of observed trades. The last col-

umn, labeled ”Model” refers to the predicted number of trades under the Pivot algorithm.

The unit of analysis is the group per round.

A histogram of the number of trades per treatment (per group per round) (Figure 4)

shows the higher frequency of shorter trade paths in the AB treatment. Between the two

K = 3 treatments, ABC2 has higher fractions of shorter paths, but the difference is not

large–56% of rounds end with two or fewer trades in ABC2, as opposed to 41% in ABC1,

and 80% end with three or fewer trades in ABC2, as opposed to 76% in ABC1. In all

treatments, few rounds include five or more trades.

Table 9 summarizes bidding and trading behavior. Recall that bidding for votes is

more complex than bidding for goods in a typical double auction market experiment.

First, once a trade has occurred, previously posted bids may have become unprofitable,

and subjects can cancel them. In our data, canceled bids reflect both mistaken bids, and

bids that were correctly posted but were later rendered counterproductive.25 Second, the

preferences of the subject accepting a bid determine whether or not the trade is profitable

for the bidder. Hence once a posted bid is accepted, the bidder is asked to confirm or

reject the trade.

The first two rows of Table 9 report the total number of bids, and how many of these

bids were canceled by the bidder. Row 3 shows the number of bids that were accepted. i.e

that found a taker. Rows 4-6 break down these total accepted bids into three categories,

depending on whether the voter accepting the bid would have a payoff gain, a payoff loss,

or no change in payoff if the acceptance were confirmed by the bidder. Row 7 displays

25Some of the bid cancelations were required by the trading rules which did not allow a bidder to be
exposed to a possible negative vote holding. Thus, for example, if voter 1 posted a bid that offered an A
vote in exchange for a C vote, and voter 2 was offering a B vote in exchange for an A vote, then voter 1
would have to first cancel his bid in order to accept 2’s bid, if he had a single A vote.
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Figure 4: Number of trades. Frequencies by group per round.

the number of accepted bids that were confirmed by the bidder, with rows 8-10 breaking

down this total into three categories depending on whether confirmation of the trade

would give the bidder a payoff gain, a payoff loss, or no change. Row 11 displays the

number of accepted bids that were rejected by the bidder, with rows 12-14 again breaking

down this total into three categories depending on whether confirmation of the trade

would have given the bidder a payoff gain, a payoff loss, or no change.

There are several observations about these summary bid statistics. First, in all treat-

ments, a large fraction of un-canceled bids were accepted, and a majority of these un-

canceled bids ultimately led to a transaction. The percentage of un-canceled bids that

ultimately resulted in a transaction ranged from a minimum of 51% in ABC2 to more

than 65% in AB.

Second, the option for a bidder to cancel bids was regularly exercised. The percentage

of bids that were canceled was 27% in AB, 34% in ABC1, and 27% in AB.

Third, the bidder’s option of rejecting trades, and thus discriminating over who ac-

cepted the original bid, played an important role. It was exercised frequently and in the

expected direction. Over the three treatments, nearly a third (231 out of 732, or 32%)

of accepted bids were rejected by the bidder. Of these 231, only 32 (14%) were bids

that would have lead to a payoff gain for the bidder. The very large majority of rejected
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AB ABC1 ABC2

TOTAL BIDS 243 544 519

Bids Cancelled 66 186 174

BIDS ACCEPTED 169 296 267

With Gain 44 109 109

With Loss 26 48 44

With No Change 99 139 114

TRADES CONFIRMED 115 211 175

With Gain 42 94 72

With Loss 13 23 34

With No Change 60 94 69

TRADES REJECTED 54 85 92

With Gain 6 15 11

With Loss 9 25 36

With No Change 39 45 45

Table 9: Summary of bids and trades

acceptances (199 out of 231) were for trades that would have led to either a loss or no

gain for the bidder.

A large percentage of accepted bids and consummated trades did not change any vote

outcome and hence led to no payoff gain or loss for either of the trading parties. Overall,

48% (352 out of 732) of accepted bids involved (potential) trades with no change for either

party, with similar frequency across the three treatments. We see a similar pattern in the

consummated trades, where 45% of those trades resulted in no change in outcomes.

The data can be sorted under several dimensions–round and order, voter id, individual

experimental subject. Such break-downs do not add to the substance of what we report in

the text, so these finer details are relegated to the appendix. In particular, the appendix

shows that there is no evidence of learning or of order effects–behavior appears very

consistent across rounds, and regardless of whether ABC1 or ABC2 was played first.

Pivot trades According to hypothesis H4, trading activity should be dominated by

Pivot trades, i.e. by payoff-increasing trades. In line with the theory, we test the hypoth-

esis by considering the fraction of trades associated with myopic strict increases in payoff

for both traders. In Figure 5, the left bars in the graph correspond to the experimental

data, the right bars to the simulations with random trading. The error bars indicate 95%
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confidence intervals.26

Figure 5: Fraction of Pivot trades.

The figure shows clearly the subjects’ search for gains. With random trading, payoff

gains for both traders rarely occur (3% in AB and 1% in ABC1 and ABC2) – less than

one fifth of what we observe in AB, and less than one tenth in ABC1 and ABC2. In all

cases, the probability that the data are generated by random trades is negligible. While

this is further evidence that the trading behavior of the experimental subjects is not

random, it is also true that the fraction of trades consistent with the Pivot algorithm is

far from 100% (17% in AB, 26% in ABC1 and 18% in ABC2). What other kinds of

trades occur?

Other trades Besides Pivot trades, observed trades fall mainly in two not mutually

exclusive categories. First, rather than requiring strict payoff gains to the traders, a

weaker rationality condition is that no trader loses from the trade. Weak payoff-increasing

trades include zero-gain trades, or trades that involve the exchange of non-pivotal votes

and hence leave the current outcome unchanged. Admitting such trades contradicts the

focus on stability, since trading need never stop. But zero-gain trades are not irrational

because they do not impact the traders’ (myopic) payoffs. The fraction of weak payoff-

26The confidence intervals are calculated assuming independence, under the null of random trading.
Note however that even under random trading the assumption of independence cannot be strictly correct
because trades are linked dynamically.
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increasing trades (i.e., the sum of Pivot trades and zero-gain trades) is 70% in AB and

ABC1 and 58% in ABC2.27

Second, every Pivot trade requires increasing the number of votes held on high-value

proposals while reducing the number of votes held on low-value proposals. However,

not all such trades are Pivot trades: a trade that induces strict payoff gains must also

change the resolution of the proposals concerned. Recall the definition of a voter’s score as

the product of the subject’s number of votes and intensities, summed over all proposals:

σi(v) =
∑K

k=1 x
k
i v

k
i . The score is a shadow value of the total votes held by a voter,

reflecting the voter’s intensity of preferences and the number of votes held, and remains

unchanged whether the voter wins or loses any proposal. Score-improving trades are

trades that increase both traders’ score. All Pivot trades are score-improving, but zero-

gain trades can also be score-improving while not improving payoffs (and thus without

being Pivot trades).28 The fraction of observed trades that are score-improving is 61% in

AB, 64% in ABC1, and 63% in ABC2.

Figure 6 shows, for each treatment, the fraction of trades consistent with Pivot trades

(left bar), zero payoff-change trades (middle bar), and score increasing trades that are not

Pivot trades (right bar).

Figure 6: Types of trades.

27Note that it is impossible for payoffs to remain unchanged for one of the two traders only: either at
least one pivotal vote is exchanged, and the change in outcome affects both traders, or none is, and no
outcome changes.

28Score-improving trades can also occur with only one of the traded votes being pivotal, in which case
one of the traders makes a loss and other trader makes a gain.
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Figure 5, above, showed that Pivot trades occur much more frequently than can be

accounted for by random trading. Is the same true of weak payoff-improving and score-

improving trades? Figure 7 plots, for each treatment, the observed fractions of Pivot

trades, zero-payoff change trades, and score-increasing-not-Pivot trades (left bars), to-

gether with the corresponding fractions under random trading (right bars), and the 95%

confidence interval under the null hypothesis of random trading.

Figure 7: Different types of trades, relative to random trading.

The figure makes clear that although the fraction of zero-payoff changing trades is

large, we cannot statistically rule out that it is the result of noise trading: because all

non-pivotal trades have zero effect on payoffs, for any given vote distribution a large

share of feasible trades belong to this class and thus are realized with high probability

under random trading. In fact, in both ABC1 and ABC2, the evidence suggests that

zero-payoff trades are if anything less than random trading generates. This is not true for

non-Pivot score-increasing trades: the fraction observed in the data is significantly higher

than under random trading (p < 0.001 in all treatments).

The figure is suggestive but, because trade categories are not mutually exclusive, it

provides a less than complete description of the trade types: many, though not all, of

not-Pivot score-improving trades are zero-change trades, and many, though not all, of

zero-change trades, are not-Pivot score-improving trades. A more rigorous approach to

testing together both the frequency and the intentionality of the different types of trades

requires developing and estimating a statistical model of trade classification.

4.2.3 A statistical model of trade types

The statistical model of trade classification we estimate assumes that executed trades

fall into four possible categories, not mutually exclusive: (1) Pivot trades; (2) zero-payoff
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changing trades; (3) score-improving trades; (4) and a residual category of random trades.

The model estimates by maximum likelihood four parameters, i.e., the propensities to

consummate a trade in each category: π (Pivot); ζ (zero-payoff); ξ (score-improving);

and ε (random).29 Each observation is a consummated trade. Given a vector (π, ζ, ξ, ε),

the probability the model assigns to an observed trade depends on the categories the trade

could theoretically belong to, and on the number of feasible trades (at the current vote

allocation) in each category. Because multiple trades are possible from any vote allocation,

and the set of feasible trades available at any point in time is largely outside the control of

any individual voter, the model assumes the trades are independent observations.30 The

likelihood of observing the data set is then simply the product of the probabilities of all

observed trades, and the vector (π, ζ, ξ, ε) can be estimated by maximum likelihood.

An example will help. Suppose, for purposes of explanation, that there were only two

observed trades in our entire experiment, one Pivot trade when the vote allocation was

v, denoted observation x1, and one score-improving trade when the vote allocation was

v′, denoted observation x2, such that one of the traders suffered a strict myopic payoff

loss. Further suppose that at v the number of available Pivot trades is T P (v), the number

of available zero-payoff trades is T 0(v), the number of available score-improving trades is

T S(v), and the total number of available feasible trades is T (v), Then, for a given vector

of parameters, (π, ζ, ξ, ε), the model assigns the probability of observation x1, the Pivot

trade at v, to be equal to:

p(x1|π, ζ, ξ, ε) =
π

T P (v)
+

ξ

T S(v)
+

ε

T (v)
.

Similarly, the model assigns the probability of observation x2, the score-improving

trade with myopic loss at v′, to be equal to:

p(x2|π, ζ, ξ, ε) =
ξ

T S(v′)
+

ε

T (v′)
.

The likelihood function to be maximized in this simple illustration would then be:

L(π, ζ, ξ, ε) = p(x1|π, ζ, ξ, ε) · p(x2|π, ζ, ξ, ε)

The parameters (π, ζ, ξ, ε) can be interpreted as propensities for the vote market to

29The classification model nests both the Pivot trade model (π = 1) and the simulated random trading
model (ε = 1), but also allows for the two additional trade types identified in the previous section,
zero-payoff and score-improving.

30As discussed earlier, the assumption of independence is not strictly correct because of the dynamic
linkages across trades.
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AB ABC1 ABC2
π 0.06 [0, 0.14] 0.19 [0.13, 0.25] 0.11 [0.05, 0.17]

ζ 0.11 [0, 0.23] 0.07 [0, 0.16] 0 [0, 0.10]

ξ 0.41 [0.28, 0.55] 0.34 [0.25, 0.43] 0.39 [0.29, 0.49]

Table 10: Model parameter estimates with 95% confidence intervals.

generate trades in the corresponding category. Thus the probability of observing a specific

trade is given by the sum of all propensities to choose categories to which the trade belongs,

with each propensity divided by the number of feasible trades in that category at the time

the trade is executed.

The model implicitly assumes that all four criteria are always feasible, or equivalently

that the sets T (v), T P (v), T 0(v), and T S(v) are non-empty at all v. Given the three

matrices AB, ABC1, and ABC2 and the one-to-one constraint on trading, T (v) and

T 0(v) indeed can never be empty.31 But this is not true in principle for T S(v) and for

T P (v). In practice, the problem can be ignored for T S(v), which is empty only very

rarely32, but not for T P (v). In AB, 39% of trades (45/115) occur from vote allocations

for which T P (v) is empty; in ABC1, the frequency of such trades is 28% (59/211), in

ABC2, 35% (62/175). Whenever a Pivot trade is not feasible, and thus not observed,

the statistical model records the realized trade as setting a zero weight on π. Hence the

estimates of π should be considered lower bounds.

We report our estimates of π, ζ, and ξ in Table 10, together with the 95% confidence

intervals.33

In practice, the model provides a simple way of organizing the trading data, yielding

estimates that mirror the observed frequencies of the different trades. There is one im-

31One-to-one trades imply that no subject can ever hold more than two (in AB) or three (in ABC1 and
ABC2) total votes. Hence it is impossible for the same subject to hold all five votes on each proposal, the
condition required for T (v) to be empty. Similarly, 0-payoff trades are always possible. In each treatment
there are at least two subjects with identical directions of preferences. In ABC1 and ABC2, each holds
three votes and there are five votes in total dedicated to each proposal. Thus it is impossible for them to
each hold all votes on the same proposal. Hence they can always make a 0-payoff trade. In AB, if the
subjects who agree hold all their votes on the same proposal–which in this case, with two total votes per
subject, is feasible–then both proposals must be decided by non-minimal majority, and again trades that
do not affect payoffs are always possible.

32The frequency of trades from vote allocations such that TS(v) is empty is 5% percent for AB and
less than 1% for both ABC1 and ABC2.

33We constructed the confidence intervals by bootstrapping the data. We estimated the probabilities
of each type of trade from the data; we then constructed confidence intervals by running 1000 simulations
using those estimates and re-estimating the probabilities. Confidence intervals do not account for possible
correlations in the data.
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portant exception: once the overlap across categories is recognized, there is essentially no

evidence of intentional zero-profit trades in any of the three treatments (in all treatments

the 95% confidence interval for ζ includes 0). There is however a significant probability

of Pivot trades in treatments ABC1 and ABC2, and of score-improving trades in all

three treatments. Keeping in mind that the π estimates are lower bounds, the estimation

confirms the message of the figures. Again as implied by the figures, π and ξ are not

collinear and can be estimated separately.34

4.2.4 Score Improving Trades

The high estimated fraction of score-improving trades across all three treatments invites

the question of why subjects engage in such trades. One possibility is that score improve-

ment is the ultimate objective, either for motives we do not understand or because of

some confusion regarding payoffs or pivotality. However, there is evidence to suggest that

this is not the case.

A first reason to be skeptical is the frequency of rejected trades reported in Table 9

above.Across all treatments more than two thirds of the rejected trades would have led

to a score improvement for the bidder.35 In contrast to payoff-improving trades, score

improving trades do not depend on the identity of the trading partner, and thus all

proposed trades that find a taker should be confirmed by the bidder.

In addition, we find that opportunities for score improvement almost always remain

open when subjects stop trading. We have defined stability as the absence of any feasible

strictly payoff-improving pairwise vote trade. One can define the alternative concept of

score stability as the absence of any feasible score-improving pairwise vote trade.36 But

score stability is not a useful characterization of final vote allocations. As shown in Table

11, the fraction of score-stable final vote allocations is 34% in AB, 14% in ABC1, and 6%

in ABC2; the corresponding frequencies of Pivot stable vote allocations are 76%, 64%,

and 64%, respectively.37 Final vote allocations are far more likely to be payoff stable than

34To check the conjecture of a downward bias in our estimates, we re-estimated the model focusing only
on the subsample for which Pivot trades were available. The resulting estimates of the Pivot propensity
π increase by a large factor in all three treatments: from 0.06 to 0.15 in AB; from 0.19 to 0.29 in ABC1,
and from 0.11 to 0.20 in ABC2, with all confidence intervals bounded away from 0.

35Recall that about a third of all accepted bids are rejected by the bidder.
36A score-stable vote allocation always exists with pairwise trading.
37As a finer analysis, one can define distance from score stability, analogously to the earlier definition

of distance from payoff stability. The distance of final vote allocations from score stability is signifi-
cantly greater than the distance from stability. Specifically, the distribution of steps to score stability
stochastically dominates the distribution of steps to payoff stability, and the difference is large and highly
significant.
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AB ABC1 ABC2

Payoff Stable 76.5 64.3 64.3
Score Stable 34.0 14.3 6.0

Table 11: Percentage of final vote allocations that are score stable, compared to payoff
stable.

score stable.

These observations suggest that score-improvement in itself does not produce a strong

incentive for trading in our experiment. Although speculative and post-hoc, an alternative

rationalization of these trades is to attribute them to precautionary behavior in the face of

uncertainty about future trades. In the complex environment of our experiment, subjects

may want to accumulate votes on high value proposals, because of a concern that further

trades are likely to take place before voting actually occurs. A forward-looking voter may

then choose to buy non-pivotal votes for a high-value proposal her favorite side is already

winning in order to increase the margin of victory and lock-in the outcome. Is there

evidence then that trading is far-sighted?

4.2.5 Is trading behavior farsighted?

Forward-looking behavior can be modeled rigorously. Vote trading is a form of dynamic

barter in which others’ trades affect both the feasibility and the desirability of one’s own

trades, making a fully strategic analysis particularly complex.38 Still, it is possible to

make some progress by exploiting concepts that have been developed in cooperative game

theory.39

The formalization requires three standard definitions, adapted to elementary trades:

Definition 6. Given two vote allocations v and v′, a pair of voters D = {i, j} is said to

be effective for (v, v′) if (v, v′) is an elementary trade between i and j.

Definition 7. A chain from v to v′ is an ordered sequence of vote allocations v1, v2, ..vm,

with v1 = v and vm = v′, and a corresponding sequence of effective pairs D2, .., Dm such

38The difficulty is shared by other games with similar structure, for example matching and network
formation games. And indeed such games are typically analyzed under myopia or other strongly restrictive
conditions. See for example, Roth and Vande Vate (1990), Diamantoudi et al (2004), Watts (2001),
Jackson and Watts (2002).

39See for example Harsanyi (1974), Chwe (1994), Mauleon et al. (2011), Ray and Vohra (2015), Dutta
and Vohra (2017), and the references therein. Note however that because of the externalities involved
and because the opportunities for trade depend on the current vote allocation, vote trading cannot be
represented under any of the existing cooperative models of farsightedness.
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that for all t = 1, ..m− 1, Dt+1 is effective for (vt, vt+1).

Finally:

Definition 8. A collection of vote allocations v1, v2, ..vm, with v1 = v and vm = v′ is a

farsighted chain if it is a chain, and, in addition, uj(v
t) < uj(v

′) for all t = 1, ...,m−1 and

all j ∈ Dt+1. If there exists a farsighted chain from v to v′, then v′ is said to farsightedly

dominate (F-dominate) v.

Using these basic concepts, there are several possible ways to define farsightedly stable

vote allocations. The most intuitive is the pairwise parallel of the farsighted core: it

states that an allocation v is (pairwise) farsightedly stable if there exists no v′ that F-

dominates v.40 Other definitions are possible, and in general problems of existence are not

trivial.41 Developing a full analysis is beyond the scope of this paper, but our goal is much

more limited: farsightedness builds on Harsanyi’s (1974) notion of indirect dominance, as

defined above. If subjects in our experiment are farsighted, then their trades should be

such that the final vote allocation reached at the end of the round should be associated

with a payoff gain for each trader, relative to the vote allocation at which the subject

traded. Was this the case?

Table 12 reports, for each treatment, the fraction of trades associated with farsighted

gains for both traders (row 2), with farsighted losses for both traders (row 3), and, for

comparison, the fraction of trades that were Pivot trades (that is, trades associated with

myopic gains, row 4).

In all treatments, the fraction of trades with farsighted gains is less than 10%, and

less than about a third of the fraction of Pivot trades (half of that for ABC1); in the two

three-proposal treatment, it is less than half of the fraction of farsighted losses. On the

basis of the these numbers alone, it is hard to put much weight on farsighted domination

as engine of trade.

The evidence of score-improving trades suggests that subjects give some thought to

future trades, but standard notions of farsightedness adapted from cooperative game

theory cannot explain the experimental data.

40Defining farsighted stability in terms of the farsighted core is the direction followed by Casella and
Palfrey (2018). Note that farsighted stability is much more demanding that myopic stability: v′ can F-
dominate v even if trades generate temporary myopic losses, as long as the final allocation v′ is preferred
to the allocation at which each voter trades. What matters is the utility comparison between the end
point of the chain and the vote allocation at which trading occurs.

41A vote allocation where all votes are held by a single voter is in the farsighted core and thus is
pairwise farsighted stable, according to this definition. Other plausible definitions, however, do not
guarantee existence in our setting. In addition, none addresses the more interesting question of whether
stability can be reached from the starting vote allocation.
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AB ABC1 ABC2

Farsighted gains 5.2 3.8 6.3
Farsighted losses 2.6 11.8 14.3
Pivot trades 17.4 25.6 18.3

Table 12: Percentage of trades yielding farsighted gains and losses, compared with percent
Pivot trades.

5 Conclusions

This paper presents the results of a laboratory experiment designed to explore the the-

oretical implications of a dynamic model of vote trading. The theoretical approach has

two essential features: (1) an equilibrium concept based on stability; and (2) a rational

vote trading process, which we call Pivot trading. Stable vote allocations are those for

which there are no strictly myopic payoff-improving vote trades for any pair of voters. The

trading process defines the possible sequences of payoff-improving trades that converge to

a stable vote allocation.

The experiment delivers four main findings. First, two-thirds of all final vote alloca-

tions in the experiment are stable, supporting the hypothesis of stability as the equilib-

rium criterion. Second, individual final vote holdings line up closely with the theory: in

all treatments, each trader type’s vote allocation at the end of the round, averaged over

rounds and groups, always changes in the direction predicted by the theory: increasing,

relative to the initial allocation, when the theory predicts that the subject will be a net

buyer of votes, and decreasing when the theory predicts net selling. Third, final proposal

outcomes most frequently correspond to Condorcet winners. In two of the treatments

this coincides with the Pivot-stable outcome; in the third treatment it does not, but the

Pivot-stable outcome is the second-most frequently observed outcome. Because the Con-

dorcet winner is the pre-trade outcome, this is suggestive of a bias in favor of the pre-trade

outcome, analogous to a status quo bias. Fourth, we find weaker support for the dynamic

process of trade posited by the model, as many of the observed trades do not yield mutual

strict myopic payoff increases.

To identify the relative frequency of different types of trades, we develop and esti-

mate a statistical model to classify trades, and the estimation indicates that, when noise

trading is filtered out, a large fraction of trades are score-improving, but not necessarily

payoff-improving. A cautionary note about this finding is that the estimation procedure

biases downward the estimated fraction of payoff improving trades, because such trading
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opportunities often fail to exist. Score-improving trades are vote exchanges in which each

voter trades a vote on a less salient issue in exchange for a vote on a more salient issue, but

does not necessarily immediately benefit from the trade in terms of changed outcomes.

We conjecture that score-improving trades may be pursued for their precautionary value,

suggesting the possibility of some farsighted thinking. However, rational farsighted trad-

ing is unambiguously rejected by our data: on average, a trade is twice as likely to leave

the two traders eventually worse off in the final outcome as it is to make them better off.

This study only scratches the surface of possibilities for laboratory analyses of vote

trading and logrolling. There are many interesting environments that are not represented

by the three studied in the paper. First, a Condorcet winner exists in all three environ-

ments in this study, but we know that more generally a Condorcet winner may not exist.

It would be interesting to explore such preference configurations and study whether the

inertia towards pre-trade outcomes we observe in our data remains true in the absence of a

Condorcet winner. Second, the experiment studies pairwise trading, but it would also be

interesting to explore more complex coalitional trades. The pairwise vote trading model

extends quite naturally to coalitional vote trading, although designing a user-friendly

trading interface would be a major challenge. Related to this point, there are alternative

ways one could organize the market. For example, one could allow communication among

voters, either concurrently with or prior to the actual trading protocol. Communication

might help voters identify beneficial trading partners. Other possible extensions of the

trading process include allowing package trades, or allowing voters to target their offers

to specific other members.

The experimental findings are also suggestive of useful extensions of the theoretical

framework. The evidence we find for score-improving trades suggests precautionary in-

centives. Understanding such precautionary motives requires allowing for risk aversion

and modeling the strategic uncertainty faced by vote traders - uncertainty about trades

that future voters might engage in. As presently formulated, the model of vote trading

operates only on the ordinal preferences of voters over the profile of final outcomes. With

uncertainty, preferences would be defined on the space of lotteries over outcomes and

would require a somewhat different theoretical approach.
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Final outcome is stable Stable outcome is final

Round 0.003 0.021
(0.028) (0.021)

Order 0.034 -0.111
(0.174) (0.151)

Treatment ABC1 -0.189 0.006
(0.144) (0.13)

Treatment ABC2 -0.186 -0.011
(0.158) (0.148)

Constant 0.722∗∗∗ 0.511∗∗∗

(0.125) (0.125)

Observations 191 295
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 13: Probability of stable outcomes

Appendix

Supplementary Data Analysis

Learning and order effects

We state in the text that we do not observe either learning or order effects in the data.
We report here the evidence on which the statement is based.

Table 13 reports the results of a linear probability model, estimating the probability
that the final vote allocations is stable (column 2) and that a stable allocation leads to no
further trade (column 3) as functions of the round number, the order of the treatments,
the treatments themselves and a constant.42 The estimation is by OLS with standard
errors clustered at the (group × treatment × session) level, thus ensuring that the group
composition is constant. With the exception of the constant term, none of the parameters
is significant.

Table 14 reports the results of a similar linear regression for the probability that a trade
is Pivot. As above, the estimation is via OLS and errors are clustered at the (group ×
treatment × session) level. None of the estimated parameters is significant, here including

42Note that the variable Order is always set to 1 for treatment AB, which is always ordered first. Hence
for AB Order is simply an addition to the constant. But the order changes across sessions for ABC1 and
for ABC2.
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Dependent variable:
Pivot trade

Round -0.01
(0.017)

Order 0.104
(0.117)

Treatment ABC1 -0.008
(0.09)

Treatment ABC2 -0.07
(0.102)

Constant 0.103
(0.087)

Observations 501
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 14: Probability that a trade is pivotal

the constant term, reflecting the low frequency of Pivot trades.
The two tables presented above evaluate learning in terms of the predictions of the

model. This is an unusually complex experiment, and we can ask a more basic question
too: do subjects learn to avoid irrational actions, in the sense of agreeing to a trade that
induces a myopic payoff loss?43 Such actions can take three possible forms: a subject
may accept a posted bid that would induce a loss for the subject; a bidder may confirm
a trade that causes the bidder a loss, or reject a trade that would result in a gain.

Table 15 reports, for each treatment, the results of a linear regression where the
dependent variable is the frequency of myopic loss actions and the explanatory variables
are the round number, the order, and the voter type, i.e. the subject ID, from 1 to 5.
The estimation is by OLS and the standard errors are clustered at the (group × session)
level. The subject ID matters because assigned preferences vary by ID, and thus so do
opportunities to trade. For example, note that in treatment AB the probability of a
myopic loss action is highest for subject 5 (as well as being the most significant of that
regression’s coefficients). According to the theoretical model, subject 5 should not trade
at all; every trade by 5 is classified as a myopic loss action.

In treatment AB, all voter types make significantly more myopic loss actions than
ID 1, but there is no significant difference across voter types for the other treatments.

43In principle forward-looking behavior could justify myopic losses; in practice we suspect they mostly
reflect confusion.
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AB ABC1 ABC2

Round -0.019 -0.009 -0.015
(0.025) (0.096) (0.012)

Order 0.078 0.03
(0.052) (0.067)

ID 2 0.145∗∗ -0.021 0.031
(0.062) (0.052) (0.056)

ID 3 0.058∗ -0.053 0.019
(0.033) (0.041) (0.059)

ID 4 0.102∗∗ 0.005 -0.023
(0.042) (0.045) (0.056)

ID 5 0.280∗∗∗ 0.035 0.1
(0.092) (0.063) (0.071)

Constant 0.094 0.042 0.195∗∗

(0.082) (0.080) (0.097)

Observations 338 592 592
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 15: Probability of a myopic loss action
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Treatment Voter Bids Accept Concluded Concluded Concluded Myopic Loss
type (ID) as seller as buyer total

1 56 31 32 20 52 3
2 52 22 25 19 44 10

AB 3 55 37 22 26 48 6
4 40 61 19 36 55 12
5 40 18 17 14 31 14
1 109 76 38 54 92 20
2 113 67 45 46 91 17

ABC1 3 101 61 37 44 81 11
4 133 55 59 44 103 22
5 88 37 32 23 55 16
1 105 62 40 36 76 15
2 116 51 35 41 76 19

ABC2 3 78 47 20 29 49 14
4 104 30 41 23 64 10
5 116 77 39 46 85 31

Table 16: Summary of bids, acceptances, and concluded trades.

The constant term is relatively high and significant for treatment ABC2 but no other
coefficient is statistically significant. In particular, there is no evidence of learning.

Bids and trades by voter type

Besides the context of learning, trading activity by voter type is interesting for its own
sake. Table 16 reports the relevant data. For each voter type, in each treatment, we
report the number of bids posted (column 3), bids accepted (column 4); trades concluded
as bidder (i.e. bids that were posted by the corresponding ID, accepted by another trader,
and confirmed by the bidder with the given ID–column 5); trades concluded as acceptor
(i.e. bids posted by others that the voter with the corresponding ID accepted and saw
confirmed by the bidder–column 6); and finally the total number of trades in which the
corresponding ID took part, either as bidder or as acceptor (column 7, the sum of columns
5 and 6).

The table shows that all voter types were active and no gross asymmetry appears in
the data. The most extreme is the disparity in the trades concluded by IDs 4 and 5 in
ABC1, which differ almost by a factor of 2. But one problem in interpreting the table is
the possibility that it reflects unusual behavior by individual subjects who happen to be
given specific voter types in the lab.
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Individual trading behavior

The focus of analysis in this paper is the trade–the pairwise exchange between two sub-
jects. Because trading requires the joint action of two different voter types, and the
opportunities and gains from trade depend on the current vote allocation, as well as on
the voters’ preferences, each trade has an idiosyncratic element. It is not informative to
classify experimental subjects in terms of the type of trades they conclude–Pivot trades,
or zero-payoff changing trades, or score-improving trades. Although still dependent on as-
signed preferences and on others’ behavior, the frequency of myopic loss actions is the one
category of trading activity that more than others reflects individual choices, and it on its
basis that we can evaluate heterogeneity in our population of subjects. The frequency of
myopic loss actions must be considered in relation to the total number of trading actions
the subject makes–the number of bids the subject accepts, and, when bidder, the number
of accepted bids the subject either accepts or rejects.

Figure 8 reports, for each experimental subject, the number of myopic loss actions on
the vertical axis, versus the subject’s total number of trading actions on the horizontal
axis. Because the focus is on the individual subject, and subjects take actions in all
treatments, the data are not separated by treatment.44 In the figure, bubbles come in four
different sizes, from 1 to 4, corresponding to the number of points that are superimposed.

Figure 8: Number of myopic loss actions by subject.

The minimum total number of trading actions any subject took is 4; i.e., every subject
engages in some trading activity. More than 75% of subjects (65/85) made between 10
and 26 actions in total; more than 75% (64/85) made between 0 and 3 irrational actions
(more than 60% (53/85) made 0 to 2 irrational actions). If we classify as outliers subjects
making more than 30 total trading actions and 10 or more irrational ones, then we have

44Because two sessions had only two treatments, not all subjects played the same number of rounds,
another reason why accounting for the total number of trading actions is important.
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6 outliers, in a population of 85. It is clear for example that the subject on the upper
far right corner of the figure is an outlier, with 66 total trading actions, of which 20 were
irrational.

Experimental Instructions

VOTE TRADING INSTRUCTIONS

Make yourself comfortable, and then please turn off phones and don’t talk or use the
computer. Thank you for agreeing to participate in this decision making experiment.
You will be paid for your participation in cash, at the end of the experiment. Different
participants may earn different amounts. What you earn depends partly on your decisions
and partly on the decisions of others. If you have any questions during the instructions,
raise your hand and your question will be answered. If you have any questions after the
experiment has begun, raise your hand and an experimenter will come and assist you.

The experiment today is a committee voting experiment, where you will have an
opportunity to trade votes before voting on an outcome. The experiment will be in three
parts. At the end of the experiment you will be paid the sum of what you have earned in
all three parts of the experiment, plus your promised show-up fee of 10 dollars. Everyone
will be paid in private and you are under no obligation to tell others how much you earned.
Your earnings during the experiment are denominated in POINTS. For this experiment
every 100 POINTS earns you 6 DOLLARS.

Here are the instructions for Part 1.
You will be randomly assigned to one of 3 committees, each composed of 5 members.

Each committee is completely independent of the others, and the decision taken in one
committee has no effect on the others. The committee will vote using majority rule to
decide on 2 different motions, denoted A and B. Each motion can either pass or fail
depending on how the committee votes. There will be a separate vote on each motion.
The computer will assign you a committee member number (1, 2, 3, 4, or 5). Part 1
consists of 3 rounds.

You will be told, for each motion, whether you prefer it to pass or to fail. The computer
will assign you (and each other member) a value for each motion which will be a number
between 1 and 100. You will earn your value for a motion if you prefer that motion to pass
and it passes, or if you prefer it to fail and it fails. This is your only source of earnings.
Your earnings for the round are equal to the sum of your earnings over the two motions.

Each committee member starts a round with 1 vote to cast on each motion. Then
there will be a 2 minute trading period, during which you and the other members of your
committee will have an opportunity to trade votes with each other. For example, you
may wish to trade your A vote in exchange for some other member’s B vote. We will
describe exactly how to do this shortly.

After the trading period ends, you will proceed to the voting stage. Once everyone has
voted, you will be told what the final votes were in your committee and how much you
earned in that round. This will complete the first round. The remaining 2 rounds in Part
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1 follow the same rules. Each committee member starts the round with a single vote on
each motion. Your committee member number, preferences for each motion (pass or fail),
your value for each motion, and the preferences and values of the other four members of
your committee all stay the same for all 3 rounds of part 1 of the experiment.

Your earnings for part 1 are the sum of your earnings in all 3 rounds. After round 3
ends, I will read you instructions for part 2 of the experiment.

We now describe in detail how you and the other members of your committee can trade
votes. When we begin a round, you will see a screen like this, although the exact numbers
may be different. [Display Screen 1] On the right of the screen is an Information Table
that contains a lot of information, so please listen carefully. It displays each member’s
preference for each motion (pass or fail), value, and number of votes. If the member
prefers the motion to fail, then the value is written in a blue color. If the member prefers
the motion to pass, then the value is written in an orange color. You can simply think of
there being two sides - the orange side and the blue side - on each motion. The number
of votes held by each member on each motion is in parentheses. Because no trading has
occurred yet, each member holds exactly one vote on each motion.

Your own row is specifically labeled and the label is highlighted in gray. The last row
in the table is labeled ”outcome”. This row tells you, for each motion, what the total vote
would be if voting took place now, by showing the column sum of votes on each motion.
The number of votes for is given first, in orange, and the number of votes against is given
second, in blue. If the votes in favor of a motion exceed the votes against, then all voters
who prefer the motion to pass will earn their value for that motion, and all voters who
prefer the motion to fail will earn zero for that motion. Similarly, if the votes in favor
of a motion failing exceed the votes in favor of it passing, then all voters who prefer the
motion to fail will earn their value for that motion, and all voters who prefer the motion
to pass will earn zero for that motion. There is a check mark next to your value if the
outcome of that motion is the outcome you prefer. This means that you earn your value
for that motion. In this example, if there were no votes traded at all, then on motion
A, there are 2 votes held by members who prefer A to pass and 3 held by members who
prefer A to fail, so motion A fails. On motion B, there are 3 votes held by members who
prefer B to pass and 2 held by members who prefer B to fail, so motion B passes. Since
ID 1 (You) prefers both motions to pass, he earns his value for motion B but earns 0 for
motion A.

To the left of the table, in grey, is the trading window. At any time during the trading
period, any committee member may post a trade offer by requesting 1 vote on one motion
in exchange for 1 vote on some other motion. Suppose the participant on the slide in
front of the room wanted to post a trade requesting one A vote in exchange for one B
vote. This is done by entering a 1 in the A box under ”Requests” and a 1 in the B box
under ”Offers”. [Screen 2]. You can only trade 1 vote for 1 vote; you can neither request
nor offer multiple votes.

After you have entered this trade request and clicked the ”submit trade offer” button,
the trade is posted in the trading panel for everyone in your committee to see. [SCREEN
3] If another committee member wants to accept your trade request, they may click on it
to highlight it, and then click on the ”accept selected offer” button.[SCREEN 4] You now
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have 10 seconds to either confirm or reject the accepted trade. A message will pop-up on
your screen. [SCREEN 5]. The message tells you what the outcome of the vote would
be if you either accept or reject the trade and voting took place without any further
trade. If you reject the trade or do nothing for 10 seconds, the trade does not occur. The
committee member who had accepted your offer is informed that you declined to confirm
the trade.[SCREEN 6]. Your offer is re-posted in the trading window, and some other
voter can accept it. If you confirm the trade, then the voter who accepted the offer now
holds 0 A votes and 2 B votes, you now hold 2 A votes and 0 B votes, and the Information
Table is updated accordingly. The new Information Table is displayed for 10 seconds on
a popup screen for everyone in your group to see. [SCREEN 7]

If you have a standing offer listed in the trading window, you may cancel it by first
clicking on it and then clicking the ”cancel selected offer” button.[SCREEN 8]

The trading period continues for 2 minutes. The timer at the top tells you how much
time remains in the trading period. The clock is frozen when the Information Table is
shown after a trade, with the new vote holdings. If a trade occurs within 10 seconds of
the end of the trading period, the trading period is automatically lengthened by 10 more
seconds.

You are free to post trade requests at any time, but you are not allowed to offer to
trade away a vote on a motion if you currently hold 0 votes for that motion or already have
an offer posted on the trading window that would result in holding 0 votes if accepted. In
that case you would first have to cancel your existing posted offer. Also remember that
you can only trade one vote for one motion in exchange for one vote for another motion.
If you try to do a trade that is not allowed, you will either receive an error message, or
the action buttons will become gray and be deactivated, preventing you from proceeding
with that trade.

When the trading period for the round is over, we proceed to the voting stage. Your
screen will now look something like this: [SCREEN 9]. In this stage you do not really
have any choice. You are simply asked to click a button to cast all the votes you hold
at the end of trading. The computer will automatically cast your votes on each motion
according to the preferences you were assigned. For example, if you prefer motion B
to fail and you hold two B votes after the trading period, those two votes will be cast
automatically against motion B. Please cast all your votes without delay by clicking on
the vote button.

After you and the other members of the committee have voted, the results are displayed
and summarized. [SCREEN 10]

As the experiment proceeds, at the bottom of each screen you will see a history table,
summarizing the results of the previous rounds [SCREEN 11. Go over the different
columns] If you switch to tab view, each round will be shown separately].

We then proceed to the next round, where you again start out with one vote on each
motion and the rules are the same as in the first round. Remember that your assigned
committee number, preferences for motions, values for motions, and those of the other
members of your committee all stay the same for all 3 rounds of part 1 of the experiment.
After the first 3 rounds are completed, we will read instructions for the second part of the
experiment.
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To give you some experience with the trading screen, we will conduct two practice
rounds. The rules will be the same as they will be in the paid rounds, but the values and
preference assignments, for or against a motion, are not the same as they will be in the
paid rounds. You are not paid for the practice rounds, so they have no effect on your final
earnings. The only purpose of the practice rounds is to help you become familiar with
the computer interface and the trading rules.

This summary slide [SCREEN 12: Summary slide] will remain up during the experi-
ment to remind you of the rules on trading and on time.

Are there any questions before we proceed to the first practice round? [START
SERVER]

Please click on the icon marked Multistage Client on your desktop. Then enter the
number of your carrel (on the right side of the carrel), click enter, and then wait. Remem-
ber that you are not allowed to use the computer for any other purposes while waiting
during the experiment (email, browsing, etc.).

[CONNECT EVERYONE AND START]
Please complete the practice rounds on your own. Feel free to raise your hand if you

have a question.
[WAIT FOR SUBJECTS TO COMPLETE PRACTICE ROUNDS]
The practice rounds are now over. Remember, you will not be paid the earnings from

the practice rounds.
If you have any questions from now on, raise your hand, and an experimenter will

come and assist you. We will now begin the paid rounds.
(Play 3 real rounds for Part 1) [After last ROUND, read:]
We will now proceed to Part 2. The rules for part 2 are the same as for part 1, but

there are now 3 motions for your group to vote on. You can only trade one vote on one
motion for one vote on another motion. The trading period will last 3 minutes. As before,
10 seconds will be added to the clock if a trade takes place within 10 seconds of the time
limit.

The values and pass/fail preferences will be different from part 1, and your committee
number as well as the composition of your committee may change. However, both the
preferences and the composition of the committee will remain the same for all of Part
2. Part 2 will last for 5 rounds. At the end of the 5 rounds, we will stop and read the
instructions for Part III.

Are there any questions before we begin?
(Play 5 real rounds for part 2) [After last ROUND, read:]
We will now proceed to Part 3. Part 3 is identical to Part 2, but the values and pass/fail

preferences may be different. Your committee number as well as the composition of your
committee may also change. Part 3 will again last for 5 rounds and again the trading
period is 3 minutes (plus 10 seconds if a trade is concluded within 10 seconds of the time
limit).

This is the end of the experiment. You should now see a popup window, which displays
your total earnings in the experiment. Please record this and your Computer ID on your
payment receipt sheet, rounding up to the nearest dollar. After you are done, please, click
ok to close the popup window. Do not close any other windows on your computer and do
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not use your computer for anything else. Also enter 10 dollars on the show-up fee row.
Add the two numbers and enter the sum as the total.

[Write output]
We will pay each of you in private in the next room in the order of your computer

numbers. Remember you are under no obligation to reveal your earnings to the other
players. Please do not use the computer; be patient, and remain seated until we call you
to be paid. Do not converse with the other participants or use your cell phone. Thank
you for your cooperation.

Figure 9: Screenshot for a subject posting a bid.
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Figure 10: Screenshot for a subject accepting a posted bid.
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Figure 11: Confirmation request for the bidder.
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